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1. Introduction

Chiral symmetry is an approximate symmetry of Quantum Chromodynamics (QCD), the fun-
damental theory that describes the interactions of quarks and gluons—the symmetry becomes exact
in the limit of vanishing quark masses. Chiral effective field theory (χEFT) is the theoretical frame-
work that permits the derivation of nuclear potentials and electroweak currents from the symmetries
of QCD—the exact Lorentz, parity, and time-reversal symmetries, and the approximate chiral sym-
metry. Pions and nucleons (and low-energy excitations of the nucleon, such as the ∆ isobar), rather
than quarks and gluons, are the degrees of freedom of χEFT. Chiral symmetry requires the pion
to couple to these baryons, as well as to other pions, by powers of its momentum Q and, as a
consequence, the Lagrangian describing their interactions can be expanded in powers of Q/Λχ ,
where Λχ ∼ 1 GeV is the chiral symmetry breaking scale. Classes of Lagrangians emerge, each
characterized by a given power of Q/Λχ , or equivalently a given order in the derivatives of the
pion field and/or pion mass factors, and each containing a certain number of unknown parameters,
the so called low-energy constants (LECs). These LECs could in principle be calculated from the
underlying QCD theory of quarks and gluons, but the non-perturbative nature of this theory at low
energies makes this task extremely difficult. Hence, in practice, the LECs are fixed by comparison
with experimental data.

In the following we focus on nuclear axial charge and current operators. These were originally
derived up to one loop in heavy-baryon covariant perturbation theory (HBPT) in a pioneering work
by Park et al. [1]. We re-derive [2] them by employing a formulation of time-ordered perturbation
theory (TOPT), which accounts for cancellations occurring at a given order in the power counting
between the contributions of irreducible diagrams and the contributions due to non-static correc-
tions from energy denominators of reducible diagrams [3]. Because of the different treatment of
reducible diagrams in the HBPT and TOPT approaches, we find differences between the operators
obtained in these two formalisms. The Hamiltonians describing the interactions of pions, nucleons,
and axial field, are derived from the chiral Lagrangians [4] , in the canonical formalism and can be
written as

HI =
3

∑
n=1

[(
H(n)

πNN +H(n)
2πNN +H(n)

3πNN + · · ·
)
+
(

H(n)
NNA +H(n)

πNNA +H(n)
2πNNA + · · ·

)]
+

2

∑
m=1

[(
H(2m)

2π
+H(2m)

4π
+ · · ·

)
+
(

H(2m)
πA +H(2m)

3πA + · · ·
)]

, (1.1)

where the superscript n denotes the power counting Qn and the subscript specifies the number of
pion, nucleon, and axial fields entering a given interaction term. As an example we report here
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some of the Hamiltonians

H(1)
NNA = −gA

2

∫
dxN τa Ai

a γ i γ
5N , (1.2)

H(1)
πNNA = − 1

4 fπ

∫
dxNA0 · (τττ×πππ)γ

0N , (1.3)

H(2)
πNNA =

∫
dxN

[
− 1

2 fπ

(τττ×πππ) ·Aiγ
i− c6

4m fπ

(τττ×πππ) ·∂iA j σ
i j +

2c3

fπ

Ai ·∂iπππ

+
c4

fπ

(∂iπππ× τττ) ·A j σ
i j
]

N , (1.4)

H(2)
πA = fπ

∫
dx
(
Ai ·∂iπππ +AAA0 ·ΠΠΠ

)
, (1.5)

where gA is the nucleon axial coupling constant, fπ is the pion decay constant, N is the isospin dou-
blet of nucleon fields, πππ and ΠΠΠ are, respectively, the isospin triplet of pion fields and their canonical
conjugates, and Aµ is the external axial field. σσσ , and τττ are spin and isospin Pauli matrices.

2. From amplitudes to currents

The expansion of the transition amplitude for a given process is based on TOPT. Terms in this
expansion are conveniently represented by diagrams. We distinguish between reducible diagrams
(diagrams which involve at least one pure nucleonic intermediate state) and irreducible diagrams
(diagrams which include pionic and nucleonic intermediate states). The former are enhanced with
respect to the latter by a factor of Q for each pure nucleonic intermediate state (see below). In the
static limit—in the limit m→ ∞, i.e., neglecting nucleon kinetic energies—reducible contributions
are divergent. The prescription proposed by Weinberg [5] to treat these is to define the nuclear po-
tential and currents as given by the irreducible contributions only. Reducible contributions, instead,
are generated by solving the Lippmann-Schwinger (or Schrödinger) equation iteratively with the
nuclear potential (and currents) arising from irreducible amplitudes.

Our formalism is based on this prescription [3]. However, the omission of reducible contri-
butions from the definition of nuclear operators needs to be dealt with care when the irreducible
amplitude is evaluated under an approximation. It is usually the case that the irreducible amplitude
is evaluated in the static limit approximation. The iterative process will then generate only that
part of the reducible amplitude including the approximate static nuclear operators. The reducible
part obtained beyond the static limit approximation needs to be incorporated order by order—along
with the irreducible amplitude—in the definition of nuclear operators. This scheme in combination
with TOPT, which is best suited to separate the reducible content from the irreducible one, has
been implemented in Refs. [6, 7, 8] and is briefly described below. The method leads to nuclear
operators which are not uniquely defined due to the non-uniqueness of the transition amplitude off-
the-energy shell. While non unique, the resulting operators are nevertheless unitarily equivalent,
and therefore the description of physical systems is not affected by this ambiguity [9, 7].

We note that an alternative approach, implemented to face the difficulties posed by the re-
ducible amplitudes, has been introduced by Epelbaum and collaborators [10]. The method, re-
ferred to as the unitary transformation method, is based on TOPT and exploits the Okubo (unitary)
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transformation [11] to decouple the Fock space of pions and nucleons into two subspaces, one con-
taining only pure nucleonic states and the other involving states that retain at least one pion. In
this decoupled space, the amplitude does not involve enhanced contributions associated with the
reducible diagrams. The subspaces are not-uniquely defined, since it is always possible to perform
additional unitary transformations onto them, with a consequent change in the formal definition of
the resulting nuclear operators. This, of course, does not affect physical representations.

The two TOPT-based methods outlined above lead to formally equivalent operator structures
for the nuclear potential and electromagnetic charge and current up to one loop corrections in-
cluded, which makes it plausible to conjecture that the two methods are closely related.

In what follows, we focus on the method developed in Refs. [6, 7, 8] and sketch how nuclear
operators are derived from transition amplitudes. We are interested in the construction of the two-
body weak axial charge and current operators. We will not discuss the aforementioned unitary
equivalence between operators corresponding to different off-the-energy-shell extrapolations of
the transition amplitudes. This issue has already been addressed in considerable detail in Ref. [7]
for the case of the two-body nuclear potential and electromagnetic charge and current operators.
Similar considerations apply to the present case.

The starting point is the conventional perturbative expansion for the amplitude

〈 f | T5 | i〉= 〈 f | HI

∞

∑
n=1

(
1

Ei−H0 + iη
HI

)n−1

| i〉 , (2.1)

where | i〉 and | f 〉 represent the initial and final states, respectively |N1N2A〉 and |N′1N′2〉 (A denotes
generically the external axial field), of energies Ei and E f with Ei = E f , H0 is the Hamiltonian
describing free pions and nucleons, and HI is the Hamiltonian describing interactions among these
particles. The evaluation of this amplitude is carried out in practice by inserting complete sets of H0

eigenstates between successive terms of HI . Power counting is then used to organize the expansion
in powers of Q/Λχ � 1.

In the perturbative series, Eq. (2.1), a generic (reducible or irreducible) contribution is char-
acterized by a certain number, say N, of vertices, each scaling as Qαi ×Q−βi/2 (i=1, . . . ,N), where
αi is the power counting implied by the specific term in the interaction Hamiltonian HI under con-
sideration and βi is the number of pions in and/or out of the vertex, a corresponding N–1 number
of energy denominators, and L loops. Out of these N–1 energy denominators, NK of them will in-
volve only nucleon kinetic energies and possibly, depending on the particular time ordering under
consideration, the energy ωq associated with the external field, both of which scale as Q2, while the
remaining N−NK − 1 energy denominators will involve, in addition, pion energies, which are of
order Q. Loops, on the other hand, contribute a factor Q3 each, since they imply integrations over
intermediate three momenta. Hence the power counting associated with such a contribution is(

N

∏
i=1

Qαi−βi/2

)
×
[
Q−(N−NK−1) Q−2NK

]
×Q3L . (2.2)

Each of the N−NK−1 energy denominators can be further expanded as

1
Ei−EI−ωπ

=− 1
ωπ

[
1+

Ei−EI

ωπ

+
(Ei−EI)

2

ω2
π

+ . . .

]
, (2.3)
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where EI denotes the energy of the intermediate state (including the kinetic energies of the two
nucleons and, where appropriate, the energy of the external field), and ωπ the pion energy (or
energies, as the case may be)—the ratio (Ei−EI)/ωπ is of order Q. The leading order term−1/ωπ

represents the static limit, while the sub-leading terms involving powers of (Ei−EI)/ωπ represent
non-static corrections of increasing order; elsewhere [3, 6], we have referred to these as recoil
corrections.

Interactions with the external axial field are treated in first order in Eq. (2.1), and inspection
of the Q scaling of the various terms shows that the associated transition amplitude admits the
following expansion

T5 = T (−3)
5 +T (−2)

5 +T (−1)
5 + . . . , (2.4)

where T (n)
5 is of order Qn. Next, we denote the two-nucleon strong-interaction potential with v and

the weak-interaction potential with v5 = A0
a ρ5,a−Aa · j5,a, where ρ5,a and j5,a are, respectively, the

nuclear weak axial charge and current operators and Aµ
a = (A0

a,Aa) is the external axial field. We
construct v+ v5 by requiring that iterations of v+ v5 in the Lippmann-Schwinger equation [7]

(v+ v5)+(v+ v5)G0 (v+ v5)+(v+ v5)G0 (v+ v5)G0 (v+ v5)+ . . . , (2.5)

match the T5 amplitude, on the energy shell Ei = E f , order by order in the power counting; here
G0 denotes the propagator G0 = 1/(Ei− EI + iη). The potentials v and v5 have the following
expansions

v = v(0)+ v(2)+ v(3)+ . . . , (2.6)

v5 = v(−3)
5 + v(−2)

5 + v(−1)
5 + v(0)5 + v(1)5 + . . . , (2.7)

where the potentials v(n) have been derived in Refs. [6, 7], in particular v(1) vanishes [7], and
v(n)5 =A0

a ρ
(n)
5,a−Aa ·j(n)5,a. Note that hereafter the power counting of v(n)5 and T (n)

5 does not include the

factor Q associated with Aµ
a . The matching between T (n)

5 and v(n)5 leads to the following relations [7]

v(−3)
5 = T (−3)

5 , (2.8)

v(−2)
5 = T (−2)

5 −
[
v(−3)

5 G0 v(0)+ v(0) G0 v(−3)
5

]
, (2.9)

v(−1)
5 = T (−1)

5 −
[
v(−3)

5 G0 v(0) G0 v(0)+permutations
]

−
[
v(−2)

5 G0 v(0)+ v(0) G0 v(−2)
5

]
, (2.10)

v(0)5 = T (0)
5 −

[
v(−3)

5 G0 v(0) G0 v(0) G0 v(0) + permutations
]

−
[
v(−2)

5 G0 v(0) G0 v(0)+permutations
]

−
[
v(−1)

5 G0 v(0)+ v(0) G0 v(−1)
5

]
−
[
v(−3)

5 G0 v(2)+ v(2) G0 v(−3)
5

]
, (2.11)
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v(1)5 = T (1)
5 −

[
v(−3)

5 G0 v(0) G0 v(0) G0 v(0) G0 v(0)+ permutations
]

−
[
v(−2)

5 G0 v(0) G0 v(0) G0 v(0)+ permutations
]

−
[
v(−1)

5 G0 v(0) G0 v(0)+ permutations
]

−
[
v(0)5 G0 v(0)+ v(0) G0 v(0)5

]
−
[
v(−3)

5 G0 v(2) G0 v(0)+permutations
]

−
[
v(−2)

5 G0 v(2)+ v(2) G0 v(−2)
5

]
−
[
v(−3)

5 G0 v(3)+ v(3) G0 v(−3)
5

]
, (2.12)

and a similar set of relations is obtained between T (n) and v(n), i.e., the amplitudes and potentials
in the presence of strong interactions only [7]. These relations allow us to construct v(n) and v(n)5

from T (n) and T (n)
5 .

3. Tree level and two-pion exchange contributions

In the following q is the momentum carried by the external axial field, ki and Ki denote the
combinations of initial and final nucleon momenta ki =p′i−pi, Ki =(p′i +pi)/2. A symmetrization
1 � 2 and an overall momentum-conserving δ -function (2π)3δ (k1+k2−q) are understood in the

expressions below. We also define si =
√

k2
i +4m2

π .

3.1 Axial charge

Tree level and two-pion exchange contributions to the axial charge are illustrated in Fig.1. The
lowest order n =−2 consists of the single-nucleon axial charge operator

ρ
(−2)
5,a = − gA

2m
τ1,a σσσ1 ·K1 . (3.1)

The leading order one-pion exchange (OPE) contribution is given by

ρ
(−1)
5,a = i

gA

4 f 2
π

(τττ1× τττ2)a σσσ2 ·k2
1

ω2
2
. (3.2)

There are in principle contributions at Q0 from L
(2)

πN and turn out to vanish when summing over all
time-orderings. At order Q1 we have loop corrections from two-pion exchange (TPE) contributions
and are UV divergent. Divergences are isolated in dimensional regularization and reabsorbed in
two of the 4 (unknown) LECs zi that enter in the contact axial charge (CT) at this order (Q1) (a
derivation is in [2]).

ρ
CT
5,a =

4

∑
i=1

ziOi , (3.3)

6
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Q�2 :

Q�1 :

Q1 :

Tuesday, October 13, 15

Figure 1: Diagrams contributing to one-body axial charge at leading order Q−2, to OPE axial charge at
leading order Q−1 , and to the TPE axial charge operator at order Q. Nucleons, pions, and axial fields
are denoted by solid, dashed, and wavy lines, respectively. Only a single time ordering is shown for each
topology.

where the operators Oi have been defined as

O1 = i(τττ1× τττ2)a (σσσ1 ·k2−σσσ2 ·k1) , (3.4)

O2 = i(τττ1× τττ2)a (σσσ1 ·k1−σσσ2 ·k2) , (3.5)

O3 = i(σσσ1×σσσ2)a (τ1,ak2− τ2,ak1) , (3.6)

O4 = (τ1,a− τ2,a)(σσσ1−σσσ2) · (K1 +K2) . (3.7)

3.2 Axial current

Non vanishing tree level and two-pion exchange contributions to the axial current are illus-
trated in Fig. 2. The lowest order n =−3 consists of the single nucleon operator

j(−3)
5,a = −gA

2
τ1,a

[
σσσ1−

q
q2 +m2

π

σσσ1 ·q
]
, (3.8)

where the second term is originated from one-body pion-pole diagrams, and it is necessary for cur-
rent conservation in the chiral limit. Tree level contributions, due to one-pion exchange diagrams
at order Q0, read [2]

j(0)5,a =
gA

2 f 2
π

(τττ1× τττ2)a
σσσ2 ·k2

ω2
2

[(
c4 +

1
4m

)(
σσσ1×k2−

q
q2 +m2

π

q · (σσσ1×k2)

)

−c6 +1
4m

σσσ1×q+
i

2m

(
K1−

q
q2 +m2

π

q ·K1

)
+

i
2m

q
q2 +m2

π

(k1 ·K1 +k2 ·K2)

]

+
gA

f 2
π

τ2,a
σσσ2 ·k2

ω2
2

[
c3

(
k2−

q
q2 +m2

π

q ·k2

)
−2c1m2

π

]
, (3.9)
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Q�3 :

Q�1 :

Q0 :

Q1 :

Tuesday, October 13, 15
Figure 2: Diagrams contributing to the OPE axial current operator at order Q0 and to the multi-pion ex-
change (MPE) axial current at order Q. Nucleons, pions, and axial fields are denoted by solid, dashed,
and wavy lines, respectively. Only a single time ordering is shown for each topology. Only non vanishing
topologies are reported.

depending on 4 LECs c1, c3, c4 and c6 coming from L
(2)

πN . It is known that a single contact term
occurs at order Q0 which we choose as

jCT
5,a = z0 (τττ1× τττ2)a σσσ1×σσσ2 , (3.10)

and none at order Q. The LEC z0 is related to the LEC cD (in standard notation) entering the three-
nucleon potential at leading order, as first pointed out by the authors of Ref. [12]. The two LECs
cD and cE which fully characterize this potential have been recently constrained by reproducing the
empirical value of the Gamow-Teller matrix element in tritium β decay and the binding energies
of the trinucleons [13, 14].

4. Loop corrections to OPE

Loop corrections to OPE weak axial charge, due to non pion-pole topologies are illustrated in
Fig. 3 (only few of them are shown for illustration). Diagrams in classes a and d of Fig. 3 turn out to
vanish . Diagrams in classes b and c give a non vanishing contribution, the associated expressions,
evaluated in dimensional regularization, are divergent. These divergences have been reabsorbed
through a redefinition of LECs involving the ππNN and πNA vertices of order Q3 coming from
H(3)

ππNN and H(3)
πNA, that gives corrections at order Q1 to the LO tree level two-body axial charge.

The details of the calculation can be found in Ref. [2]. The final renormalized expression reads

8
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d

c

b

a

Friday, October 16, 15Figure 3: Diagrams contributing to the OPE axial charge operator up to order Q1 (a, b ,c ,d denote the four
classes of diagrams that contribute). Nucleons, pions, and axial fields are denoted by solid, dashed, and
wavy lines, respectively. Only a single time ordering is shown for each topology.

ρ
OPE
5,a = i

gr
A

4 f r 2
π

(τττ1× τττ2)a σσσ2 ·k2
1

ω2
2

[
1+

gr 2
A

96π2 f r 2
π

[(
5k2

1 +8mr 2
π

) s1

k1
ln

s1 + k1

s1− k1
− 13

3
k2

1 +2m2
π

]
+

1
96π2 f r 2

π

(
s3

1
k1

ln
s1 + k1

s1− k1
− 5

3
k2

1−8mr 2
π

)
+
(

d̃ r
1 k2

1 + d̃ r
2 k2

2 + d̃ r
3 q2 + d̃ r

4 mr 2
π

)]
+ i

gr
A

2 f r 2
π

d̃ r
5 τ2,a σσσ1 · (q×k2) σσσ2 ·k2

1
ω2

2
, (4.1)

where gr
A, mr

π and f r
π denote respectively the physical values of the nucleon axial coupling constant,

pion mass and pion decay constant, and their relations with the correspondent bare quantities are
given in Eqs. (6.32), (6.8) and (6.18) of Ref. [2]. In particular we note that the relation between
gr

A and gA obtained in Eq.(6.32) in Ref. [2] matches, to order Q2, the one derived in Ref. [15]. The
quantities d̃ r

i ’s, in Eq. 4.1, denote a linear combination of the physical part of the di’s entering in
L

(3)
πN Lagrangian, dr

i .

d̃ r
1 = 2d r

2 +d r
6 , (4.2)

d̃ r
2 = 4d r

1 +2d r
2 +4d r

3 −d r
6 , (4.3)

d̃ r
3 = 2d r

6 −2d r
2 , (4.4)

d̃ r
4 = 4(d r

1 +d r
2 +d r

3 +2d r
5) , (4.5)

d̃ r
5 = d r

15 +2d r
23 . (4.6)

Some of these LECs have been determined in fits to πN scattering data [16]. We observe that
the divergent parts of the di’s, that will be denoted with dε

i , (and hence the d̃ε
i ’s), have been identi-

fied in the heavy-baryon formalism, without considering any specific process, with the background-
field and heat-kernel methods, see for example Ref. [17] and references therein. These divergent

9
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parts match those coming from loop corrections displayed in Fig. 3. In particular d̃ε
1 cancels the

divergent part proportional to k2
1 coming from the loops (diagrams in class c), d̃ε

2 and d̃ε
4 turn out to

be identical, therefore can be reabsorbed in the contact term O2, and d̃ε
3 and d̃ε

5 vanish.

Figure 4: Diagrams contributing to the OPE axial current operator at order Q1 . Nucleons, pions, and axial
fields are denoted by solid, dashed, and wavy lines, respectively. Only a single time ordering is shown for
each topology. Only non vanishing topologies are reported.

Loop corrections to OPE weak axial current are illustrated in Fig. 4. The associated integrals
are finite in dimensional regularization.

5. Comparison

The previous derivation of Ref. [1] has been done in HBPT in the limit of vanishing q, and ne-
glecting the contribution of reducible diagrams in loop corrections, as well some of the irreducible
diagrams (i.e. direct box diagram). The present derivation [2], based on TOPT, is done for generic
q, and takes into account reducible and irreducible diagrams, present in some of the loop correc-
tions. As a consequence the axial current is conserved in the chiral limit and independent on the
parametrization of the pion field. Renormalization of the axial charge operator is accomplished.
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