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1. The process and the puzzle

Pseudoscalar decays into lepton pairs are an interesting playground to test our knowledge of
the lowest-lying pseudoscalar mesons. The reason being that such processes occurs at the loop
level in the standard model (SM) of particle physics (neglecting the tiny Z0-boson contribution).
Such loop is mediated through an intermediate two-photon state, see Fig. 1, which then requires an
accurate knowledge of Pγ∗γ∗ interactions at all energies, where P = π0,η ,η ′. This interaction can
be parametrized as

iMPγ∗γ∗ = iεµνρσ qµ

1 ε
ν
1 qρ

2 ε
σ
2 FPγ∗γ∗(q2

1,q
2
2), (1.1)

where FPγ∗γ∗(q2
1,q

2
2) is the double virtual pseudoscalar transition form factor (TFF), which due to

Bose symmetry is a symmetric function of the photons virtualitites. This function encodes the un-
derlying structure of the pseudoscalar meson, providing thus a valuable information. Remarkably,
all the measured decays so far [1, 2, 3] exhibit deviations from the available theoretical predic-
tions, for more details see the preliminary results of this work in Tab. 1. Since in the SM these
branching ratios (BRs) are suppressed by the loop and helicity flip, if the discrepancies persist,
they may suggest some new physics scenario, specially those of axial or pseudoscalar nature, such
as [4, 5, 6]. The recent advancements in the field, either from a recent re-evaluation of radiative
corrections [7, 8] or TFF modelization [9, 10, 11] cannot explain the discrepancies at all. There is
however, two aspects which have not been fully exploited so far, the treatment of double virtuality
and systematic errors. In the present work, we employ the machinery of Padé theory extended to
the doubly-virtual case, without modeling or prejudice, to account for the TFF description. Our
framework provides a powerful tool which can be used to analyze experimental data, which would
have then the last word. The method allows as well, for the first time, for a rigorous evaluation of
systematic errors, an ingredient never discussed so far.

P

ℓ

ℓ

q

k

p− k

FPγ∗γ∗(k2, (q − k)2)

q − k

Figure 1: Leading order QED contribution driving P→ `` decays.

2. Main properties: low versus high energies

The leading order QED contribution driving P→ `` decays is depicted in Fig. 1 and its ampli-
tude can be expressed in terms of the P→ γγ decay as

BR(P→ ``)

BR(P→ γγ)
= 2

(
αm`

πmP

)2

β`|A (m2
P)|2, (2.1)
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where β`(m2
P) = (1−4m2

`/m2
P)

1/2 is the outgoing lepton velocity, mP and m` are the pseudoscalar
and lepton masses, respectively, and A (m2

P) is the loop amplitude

A (q2) =
2i

π2q2

∫
d4k

q2k2− (q · k)2

k2(q− k)2((p− k)2−m2
`)

F̃Pγ∗γ∗(k2,(q− k)2), (2.2)

that depends on the normalized TFF (F̃Pγ∗γ∗(0,0) = 1) which must be provided at this point. Such
object is of paramount importance as otherwise the integral would logarithmically diverge. For the
case of light pseudoscalars, i.e., the π0, it is still possible to derive further properties from (2.2).
The smallness of the π0 mass does not allow to have any intermediate hadronic states contributing
to the imaginary part, which is thereby fully given by the intermediate γγ state,

Im(A (q2)) = Im(Aγγ(q2)) =
π

2β`(q2)
ln
(

1−β`(q2)

1+β`(q2)

)
. (2.3)

This provides a model-independent lower limit |A (q2)| ≥ Im(Aγγ(q2)) known as unitary bound [12],
which for the π0→ e+e− decay yields BR(π0→ e+e−) ≥ 4.7×10−8. By contrast, the heavier η

and η ′ mesons admit intermediate hadronic states contributing to the imaginary part. For this rea-
son, such bound does not exist for these cases and its use as a reference number is misleading. The
numbers provided in Tab. 1 however can do this job, specially for the experimental programs to
decide on the hours of data taking. In addition, for light pseudoscalars, the heavy scale introduced
by the TFF, ΛTFF� mP > m` in Eq. (2.2), allows to approximate the loop-integral (2.2) as [13]

A (q2) =
iπ
2β`

L+
1
β`

(
1
4

L2 +
π2

12
+Li2

(
1−β`

1+β`

))
− 5

4
+
∫

∞

0
dQ

3
Q

(
m2
`

m2
` +Q2 − F̃Pγ∗γ∗(Q2,Q2)

)
,

(2.4)
where L = ln

[
(1−β`(q2))/(1+β`(q2))

]
, Li2 is the dilogarithm function and Q is the space-like

photon virtuality. This kind of approximation, in this or any other form, has been widely used
in the literature [9, 10, 14], and is particularly useful for connecting to chiral perturbation theory
(χPT), see Ref. [9]. The remaining dependence on the TFF is the integral in Eq. (2.4), where
three important properties arise. First, the relevant TFF region is space-like. Second, the TFF is
evaluated at Q2

1 = Q2
2 photon virtualities, making it very sensible to the unknown doubly-virtual

behavior. Third, due to the smallnes of m`,mP, and the photons propagators, the integrand is
extremely peaked at very low energies, saturating below 1 GeV, which requires an extremely
precise description for the TFF at these energies, see Fig. 2, where the function Kernel(Q2) =

3Q−1[m2
`/(m

2
` +Q2)− F̃Pγ∗γ∗(Q2,Q2)] refers to the integral in Eq. (2.4).

Given the relevant (low-)energy range, one could try to use χPT to fully calculate the process.
Then, at leading order, the imaginary part of diagram in Fig. 1 is finite, but its real part diverges
and requires a local counterterm χ [9, 15], loosing predictivity. Moreover, the connection among
different decays is not straightfoward, a detailed discussion will be presented in Ref. [16]. On the
other hand, the high-energy behavior obtained from pQCD —which imposes a behavior on the TFF
which renders the integral in Eq. (2.2) finite— cannot be extrapolated down to such low energies.
At the end, one is compelled then to use some phenomenological model accomodating (some of)
the previous properties the best one can. This is the example of vector meson dominance (VMD)
models [14], quite used in the past, or the newer large-Nc inspired ones [9, 17]. However, such
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Figure 2: Integral kernel in Eq. (2.4). The different bands give the relative contribution to the integral.

approaches entail large model-dependencies [13, 18], which have been tried to ammend through
the use of VMD data-fits [10], at least for the single-virtual part, since no experimental data is
availale for the doubly-virtual TFF. The question remains then, how reliable these calculations are
—specially regarding their error evaluation— and, given the current disagreement of the measured
BR, to which extent such discrepancy is real. Moreover, the approximation ΛTFF�mP is not accu-
rate anymore despite intuition. Actually, from Eq. (2.2), the relevant TFF region is−m2

P < Q2 < ∞,
in contrast to Eq. (2.4), which requires an accurate description both in the spacelike and the Dalitz-
decay P→ γ`` kinematics. This implies, specially for the η ′, the appearence of aditional hadronic
thresholds invalidating the common use of the unitary bound. New techniques then are required
to better describte the TFF accounting for all possible low- and high-energy constraints and repro-
ducing the available experimental data. This highly non-trivial endeavour is explored in the next
section.

3. Our approach: Canterbury approximants

In Ref. [19], it was proposed that the single-virtual TFF FPγ∗γ(Q2,0) can be described through
the use of Padé approximants (PA) [20] in the space-like region, an idea that was extended to the
η and η ′ cases in Ref. [21]. Padé approximants, PN

M(Q2) are rational functions of polynomials of
degree N and M, constructed in such a way that they match the series expansion of the function to
be approximated up to O((Q2)N+M+1), i.e., for the FPγ∗γ(Q2) = FPγ∗γ(0)(1+ bPQ2 + cPQ4 + ...),
its PA reads

PN
M(Q2) =

TN(Q2)

RM(Q2)
= FPγ∗γ(0)(1+bPQ2 + cPQ4 + ...+O(Q2)N+M+1). (3.1)

The advantage of PA is that they are able to extend the radius of convergence of conventional series
expansions, for meromorphic, as well as for Stieltjes functions [20], to the whole complex plane
except at regions where the function is already ill-defined, such as poles or branch cuts. Therefore,
it is expected both, from the point of view of the large-Nc limit of QCD, and the analytic structure
at low- and high-energies —which is of the Stieltjes kind— that PA converge, providing then a
model-independent approach for describing the TFF once the low-energy parameters in Eq. (3.1)
are given. In Refs. [19, 21], it was explained how to extract them in a model-independent way
through the use of experimental space-like data with the inclusion, for the first time, of a system-
atic error. In addition, the use of two-point PA [20] allows to reconstruct the TFF from the low- and
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high-energy expansion at the same time. Actually, this property was used in Ref. [21] to determine
the η ,η ′ asymptotic behaviors. With this description at hand, we observed that PA provide an
excellent description for the η Dalitz decay as well [22] and very recent results from BES-III [23]
show similar agreement for the η ′. We used this time-like data for the η [24] and η ′ [25] on top
of the available space-like data in the first ever combined description in order to extract the most
precise determination for the low-energy parameters to date. In conclusion, our approach provides,
for the first time, an excellent description for the TFF in the region of interest for this processes.

There is still the point, which goes beyond the present discussion, specially for the η ′, on how
to interpret the resonances appearing in the Dalitz region: these resonances produce an additional
contribution to the imaginary part on top of the γγ one. From Padé theory, we know that PA
should effectively reproduce resonances and threshold-discontinuities contributions as well. These
assessments are confirmed in our preliminary studies in Ref. [16] and suggest that the unitary bound
is lowered by 1% and 40% for the η and η ′, respectively. Further details are unimportant for the
current discussion and will be given in Ref. [16].

The last point remaining then is the extrapolation from the single-virtual TFF to the doubly-
virtual case with the current lack of data. This is achieved through the use of Canterbury approxi-
mants (CA), an extension of Padé approximants to bivariate functions. They are defined analogous
to PA, Eq. (3.1), as to match the original series expansion,

CN
M(Q2

1,Q
2
2) =

TN(Q2
1,Q

2
2)

RM(Q2
1,Q

2
2)

= FPγ∗γ∗(0,0)(1+bP(Q2
1 +Q2

2)+ cP(Q4
1 +Q4

2)+

+a1,1Q2
1Q2

2 + ...+O(Q2
1)

γ(Q2
2)

N+M+1−γ), (3.2)

with γ ∈ (0,N +M+1), see [13] and references therein. The simplest element reads [13]

C0
1(Q

2
1,Q

2
2) =

FPγ∗γ∗(0,0)
1−bP(Q2

1 +Q2
2)+(2b2

P−a1,1)Q2
1Q2

2
, (3.3)

where bP is the slope from the single-virtual TFF series expansion, and the new parameter a1,1 is
the doubly-virtual slope. Again, similar convergence theorems exist for the bivariate case which
ensures the model-independency of the method [13]. The problem we face in this case is that
no data is available to extract those parameters as done in Refs. [19, 21, 24], which is the rea-
son for which we do not consider higher approximants, such as C1

2(Q
2
1,Q

2
2), which would allow

to test the convergence of the CN
N+1(Q

2
1,Q

2
2) sequence. Consequently, we need an estimate for the

a1,1 parameter which may be thought as an educated guess generous enough as to cover its real
value. To our best knowledge, there are two available insights. On the one hand, at very low-
energies, there are indications suggesting that non-factorizable effects are suppressed [26], imply-
ing FPγ∗γ∗(Q2

1,Q
2
2)∼ FPγ∗γ(Q2

1,0)×FPγ∗γ(Q2
2,0), and a1,1 = b2

P. On the other hand, the high-energy
behavior states that, for large virtualitites, the TFF behaves as limQ2→∞ FPγ∗γ∗(Q2,Q2) ∼ Q−2,
meaning that a1,1 = 2b2

P. This suggests that the real value should lie within a1,1 ∈ {b2
P,2b2

P} range1.

1A very recent analysis, Ref. [27], seems to confirm the assumption we employed in Ref. [13] and here. Namely,
that factorization should hold at low-energies for the η TFF at least. Note however that we do not assume this holds true
at a larger energy range as this study suggests.
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Process BRth BRexp Ref.
π0→ e+e− (6.20÷6.35)(5)×10−8 7.48(38)×10−8 [2]
η → e+e− (5.31÷5.44)(+4

−5)×10−9 ≤ 2.3×10−6 [28]
η → µ+µ− (4.72÷4.52)(+4

−8)×10−6 5.8(8)×10−6 [1]
η ′→ e+e− (1.82÷1.86)(19)×10−10 ≤ 5.6×10−9 [29, 30]
η ′→ µ+µ− (1.36÷1.49)(33)×10−7 −

Table 1: Preliminary results for the different decays in comparison to experimental results using Eq. (2.2).

Of course, experimental data or lattice QCD will have the last word on this. For the moment, we
take this range for our calculations as the best estimate to be on the conservative side. Notice here
that such information plays a marginal role at low energies where F̃Pγ∗γ∗(Q2,Q2) 'C0

1(Q
2,Q2) =

1− 2bPQ2 +(2b2
P + a1,1)Q4 + ... as the Q2-term dominates there. To illustrate this, using this ex-

pansion and integrating in Eq. (2.4) up to a cut-off Λ, we find that factorization or OPE results are
barely the same up to Λ = 0.4 GeV, with BR(π0 → e+e−) = 6.64× 10−8. It will be necessary
nevertheless to find whether OPE or factorization represents the better choice above if precision is
required, particularly in the Λ = (0.4−2) GeV region, with special emphasis on its lower-energy
part. On the other hand, reproducing or not the experimental value will depend on an unexpected
a1,1 value which would be already observable at very low energies [13]. Its eventual value could be
then determined from this hypothetical data through the use of CA in a model-independent fashion.

4. Results for BR(P→ ``)

In the following we present our numerical results. Besides implementing the correct low-
energy behavior, we provide an exact calculation of Eq. (2.2) rather than (2.4), which respresents
—specially for the η ,η ′ and µ+µ− decays— an additional improvement with respect to previous
studies. We show in Tab. 1 our preliminary results from our chosen range a1,1 = (2b2

P÷ b2
P), see

Ref [16]2. Note that the high-energy condition decreases all the BRs with the exception of the
η → µ+µ− decay. The errors appearing arise from the low-energy parameters determination as
well as for the systematic error of the procedure, which is non-negligible as we cannot go beyond
the simplest C0

1(Q
2
1,Q

2
2) approximant. For a detailed discussion on systematic errors, see Ref. [16].

Notice that our preliminary estimates of our systematic error for the η ′ seems to be rather large
(25%), beyond the impact of the a1,1 range. This very large error comes from the way we are
accomodating resonance effects in our framework. Further work is undergoing and we expect to
diminish it in Ref. [16].

Our method provides, for the first time, a serious tool to assess a theoretical error from the
mathematical point of view, which seems to be higher than previously estimated [9, 10, 11, 14]3.
In addition, we find non-negligible corrections for the η and η ′ decays. Though this was noted

2The above results are still preliminary and represent the work in progress from Ref. [16]. Notice in addition the
different range to that chosen in Ref. [13]. The reason for our previous choice was meant to illustrate implications from
experimental π0→ e+e− results which is of no relevance here.

3We note that, when comparing to existing results —even if all mass-corrections are taken— discrepancies may
appear if the values implied by their TFF slopes are different.
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before [11], this is the first calculation providing the exact result. Moreover, our approach is the
only one able to make full use of experimental data on both, the space-like and low-energy time-like
regions.

From Tab. 1, we find a 3σ discrepancy for the π0. A recent reanalysis of radiative correc-
tions [7, 8] suggests though a smaller BR of 6.87(36)× 10−8, reducing the discrepancy if their
results are confirmed. Similarly, we find 1.3σ deviation for the η → µ+µ− decay. Even if the
discrepancies are not that large yet, the existing difference would imply either new physics, or
values for the a1,1 parameter out of theoretical expectations, i.e., an unexpected behavior of the
doubly virtual TFF at low-energies. This makes very interesting both, a new measurement of these
decays with higher precision to discard a statistical fluctuation, and a first measurement of the
doubly-virtual TFF, which would determine once for all the nature of the discrepancy. Moreover,
given our obtained value for the η ′→ e+e− result and present bounds [29, 30], we would like to
encourage our experimental colleagues in Novosibirsk to push further their measurement at SND
and CMD-III to reach this limit, higher than naive expectations from the (wrong) unitary bound.

We stress that an unexpected behavior of these TFFs would have a large impact in the hadronic
light-by-light piece of (g−2)µ , as it enters in the π0 contribution [13, 31]. We believe therefore that
clarifying the current situation in P→ `` both on the theoretical and experimental side, represents
an important task for any approach calculating the hadronic light-by-light contribution to (g−2)µ .

5. Summary and outlook

In this work we have revised the P→ `` decays for P = π0,η ,η ′ in a model-independent way
with the machinery of Padé theory extended to the doubly-virtual case, Canterbury approximants.
Such approach is data driven and allows, for the first time, to include the space-like and low-
energy time-like data together with the low- and high-energy constraints as well as a systematic
errors. Moreover, our approach provides a tool to systematically analyze experimental data on
the doubly virtual transition form factors beyond the standard modelization procedures used at
experiments. Given the existing discrepancies in all the measured channels, we have studied the
role of double virtuality with emphasis in the low-energy domain —which has been overlooked—
without negelcting the high-energy behavior. In addition, we have performed the exact numerical
calculation for these decays, which is specially relevant for the η and η ′. We have found that our
results cannot acommodate the experimental results unless the low-energy behavior of the TFF is
out of expectations. To confirm this, data on the doubly virtual TFF would be required. In addition,
new precise measurements for these processes would be very welcomed in order to discard any
statistical fluctuation and explore the presence of new physics. Moreover, these implications are of
interest for the community involved in (g−2) physics.
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