PROCEEDINGS

OF SCIENCE

KEK-CP-329

Chiral behavior of light meson form factors in 2+1
flavor QCD with exact chiral symmetry

JLQCD Collaboration: T. Kaneko*’] S. Aoki‘“, G. Cossu®, X. Feng¢, H. Fukaya’,
S. Hashimoto®?, J. Noaki“, T.Onogi/

¢ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

b School of High Energy Accelerator Science, SOKENDAI (The Graduate University for
Advanced Studies), Ibaraki 305-0801, Japan

¢ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

4 Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8577, Japan

¢ Physics Department, Columbia University, New York, NY 10027, USA

! Department of Physics, Osaka University, Osaka 560-0043, Japan

We present a study of chiral behavior of light meson form factors in QCD with three flavors of
overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses
down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic
form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral
behavior using the next-to-next-to-leading order chiral perturbation theory.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

*Speaker.
TE-mail: takashi.kaneko@kek.jp

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



Chiral behavior of light meson form factors in 2+1 flavor QCD with exact chiral symmetry T. Kaneko

1. Introduction

The K — mlv semileptonic decays provide a precise determination of the Cabibbo-Kobayashi-
Maskawa matrix element |V,,|. Lattice QCD plays an important role to evaluate the normalization
of the vector and scalar form factors f. (0) = fy(0) in the K — 7 matrix element

M% — M2
(P )VulK(P)) = (p+ P )uf+ () + =L au{fo() = -0} (t=¢"=(p—p)?). (L)
The required accuracy is high, typically within 1%. The phase space integral for the decay rate
is estimated from the form factor shape, namely their ¢+ dependence, which has been precisely
measured by experiments. Therefore a rigorous comparison of the shape between lattice QCD
and experiments can demonstrate the reliability of the precision calculation of f, (0). This article
presents a lattice calculation of these form factors and analysis based on next-to-next-to-leading or-

der (NNLO) chiral perturbation theory (ChPT). We also discuss the kaon and pion electromagnetic
(EM) form factors defined through

(P(P)ulP(P)) = (p+P),F (1) (P=m"K"K), (1.2)

which provide helpful information for the ChPT analysis of the semileptonic form factors.

2. Simulation method

We simulate 2 + 1 flavor QCD using the overlap quark action, which exactly preserves chiral
symmetry and enables us to directly compare the lattice data with ChPT. Numerical simulations
are remarkably accelerated by modifying the Iwasaki gauge action [1] and by simulating the trivial
topological sector [1, 2]. Note that effects of the fixed global topology can be considered as finite
volume effects suppressed by the inverse lattice volume [2]. Gauge ensembles are generated at a
lattice spacing a=0.112(1) fm and at a strange quark mass m,; =0.080 close to its physical value
mg phys =0.081. Four values of degenerate up and down quark masses, m; =0.015, 0.025, 0.035 and
0.050, are simulated to explore a range of the pion mass 290 — 540 MeV. At each m;, we choose a
lattice size, 16% x 48 or 24% x 48, to control finite volume effects by satisfying a condition ML > 4.
The statistics are 2,500 HMC trajectories at each simulation point (m;,my).

We calculate the relevant two- and three-point functions of pion and kaon by using the all-
to-all quark propagator. The form factors are precisely estimated from ratios of the correlation
functions. We employ the twisted boundary condition for the valence quarks to simulate near-
zero momentum transfers |t| < (300 MeV)?. The m, dependence of the form factors is studied by
repeating our calculation at a different m; (=0.060) with the reweighting technique. We refer to
Refs [3, 4] for more details on our simulation parameters and method.

3. EM form factors

Chiral symmetry constrains the chiral behavior of the EM form factors. In the chiral expan-
sion of these form factors at the next-to-leading order (NLO) in terms of the expansion parame-
ters &z ) :M{ZH_K} /(47Fz)? and t, we have only single free parameter L}, which is one of the
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Figure 1: Left panel: NNLO ChPT fit to K™ EM form factor. Data at different M;’s are plotted in different
symbols as a function of #. Right panel: NLO and NNLO contributions (thick lines) and their decomposition
into LEC-dependent and independent parts (thin lines) at (m;,m;) = (0.015,0.080). The blue and red lines
show the NLO and NNLO contributions, respectively.

low-energy constants (LECs) in the NLO chiral Lagrangian. Many more LECs appear at NNLO:
LEI,---75} and C}’s in the NLO and NNLO Lagrangians. Since LEL“_,S} have been well studied in
phenomenological studies of experimental data and they appear only in the possibly small NNLO
corrections, we fix them to a recent phenomenological estimate in Ref. [5]. In general, C}’s are
poorly determined in phenomenology and have to be determined on the lattice.

Let us write the NNLO chiral expansion as

FJ (1) = o+ F5 () + Fu(t) + Fg(t) (P=n"K",K"), 3.1)
Fyo(t) = oo () + Frapt),  Fyg(t) = Fya () +Fpact) + Fry p(t). (3.2)
The terms F\f 0 F\f , and F\f 4 are the leading-order, NLO and NNLO contributions, respectively.
We add an even higher order correction F“Z 6> When necessary. The additional subscripts “L”, “C”

and “B” represent L!-dependent, C;-dependent and LEC-independent parts, respectively. The C;-
dependent NNLO analytic terms F‘f 4.c are given as [6]

FpFlyolt) = —4chs 5 M2t —8ch. g Myt —4ch 1, (3.3)

F4Fv4 clt) = _4CK+,7'ctM7rt_4C;{+,KtM12(t_4Ctr2 £ (3.4)
8

iR c(t) = =3 cho (Mg —MR)1, (3.5)

where the coefficients are linear combinations of C;’s. These are not independent: ¢ ., =cl , +
c;(o /3 and c;(+7 K= c;tm + C;rﬂ Kt c;(o /3. We therefore treat the following four as fitting parame-
ters

C;t+77tt = 4C{2 + 4C{3 + 2Cg3 + Cg4 + Cgs + 2C60, (36)
Crrxr = 4C13+Coy,  ¢p =Cgg—Coy, o = 2Cq3 — Cgs. 3.7

An example of the NNLO ChPT fit for the charged kaon EM form factor F‘f(+ is plotted in the
left panel of Fig. 1. We obtain x2/d.o.f=1.8 and

Ly = 4.6(1.1) g (jg;;)U (04)e0x 1077, )y = —6.4(1.1)a(0.1)7(0.5) 00 x 107, (3.8)
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where the renormalization scale is set to 4 =M). The second error is the uncertainty due to the
choice of the input Lh,...,s}’ whereas the third is the discretization error estimated by power count-
ing O((aAqcp)?) ~8 % with Aqgcp =500 MeV. These results are reasonably consistent with the
recent phenomenological estimate in Ref. [5]. While other fit parameters are poorly known in phe-
nomenology, our results are roughly consistent with a naive power counting C/ = O((47)~*) [4].
An interesting observation in the right panel of Fig. 1 is that the non-trivial chiral correction
F‘g F‘f: is largely dominated by the NLO analytic term F‘f(; .- Note that this term is not un-
expectedly large, because our result for L; is consistent with the phenomenological estimate as
well as a power counting L} = O((471)~2). Since this term is independent of the valence quark
masses (F&f; L :F‘fi = 2Lyt /F2), the NNLO chiral expansion of the charged meson EM form

factors Féﬁ’lﬁ} shows reasonable convergence. This is however not the case for the neutral kaon,
because F‘f(; ;. vanishes to satisfy the constraint F‘fo (r)=0 at m; =mj.
We obtain the following results for the charge radii from the NNLO ChPT fit
(FP)VE" = 0.458(15)gia (j?)q (37)azo fm?, ()K" = 0.380(12) 5 (1]),, (31)aro fm?, (3.9)
0

()5 = —0.055(10)at(1) 1 (4) a0 fm’. (3.10)
These are in reasonable agreement with the experimental values ()% =0.452(11) fm?, (r2)K" =
0.314(35) fm? and (r2)K" = —0.077(10) fm? [7].

4. Kaon semileptonic form factors

In Fig. 2, we demonstrate a conventional
determination of the normalization f, (0). At
simulated M;’s, we fix f;(0) assuming the
following ¢ dependence of f. (¢) and fy(¢)

1
fit) = f+(0){+a+t}, 4.1
1—t/M2. 7 e m=0080
fo(t) = f+(0) (1 +aot +bot?) (4.2) 096 N 25;22?3,:3 1
L v average(N,=4)
based on the vector meson dominance hypoth- T T B F B

esis. The results are well described by the M, [Gev’]

NNLO ChPT formula with y?/d.o.f. ~0.2. Figure 2: Extrapolation of f,(0) as a function of M3
The extrapolated value f, (0) = 0.644(4)u and M% based on NNLO ChPT. Circles and squares
show our data at my; =0.080 and 0.060, respectively.
The diamond represents the value extrapolated to the
physical point (11 phys, s phys). We also plot the pre-
liminary FLAG averages for Ny =3 and 4 by triangles.

is consistent with the average of recent re-
sults [8, 9, 10] by the Flavor Lattice Aver-
aging Group (FLAG) [11, 12]. We note that
these recent studies are pursuing more precise
determination by simulations near or directly
at the reference point # =0 and the physical
point (1 phys, My phys)- Note also that a study of the form factor shape based on a phenomenologi-
cal parametrization is also reported at this conference [13].
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Figure 3: NNLO ChPT fit to £ (¢) (left panel) and fy() (right panel) as a function of ¢. Different symbols
show data at different M;’s.

We employ a different strategy exploiting exact chiral symmetry: we fit the lattice data of f
and fy to their NNLO ChPT formula as a function of M%m K} and ¢. Similar to the EM form factors,
the chiral expansion of the vector form factor f; [14, 15] has only Ly at NLO and other L’s at
NNLO. We fix L; to the value obtained in our analysis of the EM form factors, whereas others are
set to the phenomenological estimate [5]. The analysis of the EM form factors provides helpful
information also for the NNLO LECs. The coefficient ct’2 in Egs. (3.3)—(3.4) also appears in the
NNLO analytic term of f as

Fifrac = ¢\ ax (Mg —Mz)+cy p Mt +'y g Mgt —4c), 1. (4.3)

Other two coefficients can be written in terms of those for the EM form factors
¢y = —4(2C1, +4C1; + Cgy + Cgs + Cgp) = —2 (C;#th + v ke — C;<0> ) 4.4)
¢ i = —4(2CT, +8C] +2C +2Ch + Cho) = =2 (¢ gy + 3¢k g+ o). (45)

The remaining one ¢, ;= —8(C}, +C3,) describes SU(3) breaking effects at # =0, and hence
is absent in the EM form factors. Therefore we have only one free parameter ¢, ,x in the chiral
extrapolation of f.

The scalar form factor fy has many additional NNLO LECs. In order to carry out a chiral
extrapolation with less free parameters, we consider the following quantity proposed in Ref. [15]

~ t F;
fo(t) = fo(f)‘f‘m (1 - F:) . (4.6)

The Dashen-Weinstein relation [16] suggests a large cancellation between the NNLO analytic terms
of fo and F /F;. In fact, the NNLO analytic term of f; is given in a rather simple form

Fifoac(t) = ¢, zx (Mg —Mz) + (8CT, — ¢y 1x) (Mg +M;z) t —8Cpat?, 4.7

and a simultaneous fit to f, and f; has only two fitting parameters ¢, gk and Cp,.
Figure 3 shows the NNLO ChPT fit to f,(¢) and fo(¢) as a function of ¢. Our data are well
described with y?/d.o.f.~0.7. Similar to the EM form factors, the ¢ dependence of f, is roughly
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approximated by the NLO analytic term f >, :F‘fz - On the other hand, fo has no NLO analytic
term due to the cancellation between fj and Fk /Fy, and shows a rather mild r dependence.
From the simultaneous fit to £, and fy, we obtain

£(0) = 0.9636(36)stat (753 iy (29)a0 = 0.9636 (£52) (4.8)

) chiral

at the physical point. The first error is statistical. The second is the systematic uncertainty of the
chiral extrapolation, which is estimated by repeating the fit including higher order corrections or
using different values for the input LEI,A..,S}' The third one is the discretization error estimated by
power counting. The total uncertainty is at the level of <1 %.

An advantage of our analysis method is e
that we can study both the normalization and I o m= g-gi
m.=0.
shape of the form factors by a unique fit based % oo
--—- NLO _

on NNLO ChPT. In Fig. 4, we plot the slope
Al in the quadratic parametrization

, 2
A, x10

!/

f+(t) = f+(0) {1+132+ l‘+0(f2)}' 4.9)

ﬁi
Namely, e
Y T F R ‘zoﬂz ‘2]‘ s T
M2 M, [Gev
A—/i- — ot 4 (t) (4.10) Fi ure 4: Slope A’ as a function of M. The solid line
f+(0)  di guire % S10pe Y

1=0 is reproduced from our NNLO ChPT fit, and the sta-
The NNLO contribution turns out to be sig- tistical error is shown by the dotted lines. The circles

nificant even near the physical point. It is and squares represent the values estimated at simula-
tion points by assuming the polynomial parametrization

therefore important to study the form factor
(4.9). The dashed line shows the NLO contribution.

shape by taking account of their non-analytic
chiral behavior at NNLO.

From the NNLO ChPT fit, we obtain A} =3.08(14) s (31)sys ¥ 10 2and A/ =1 98(15)star (44)sys X
1072, where we add the uncertainty of the chiral extrapolation and the discretization error in
quadrature. This is consistent with recent experimental measurements, A} =2.58(7) x 1072 and

$=1.37(9) x 1072 [17] within 2 0. The largest uncertainty comes from the discretization for A/,
and the chiral extrapolation for A;.

5. Summary

In this article, we have presented our lattice calculation of the light meson EM and semilep-
tonic form factors. These form factors are precisely calculated by using the all-to-all quark propa-
gator. Their chiral behavior is directory compared with continuum ChPT by exploiting exact chiral
symmetry preserved with the overlap quark action.

We observe that the lattice data of the charged meson EM form factors are reasonably well
described by their NNLO ChPT formula, and estimate the relevant NLO and NNLO LECs. These
results are used in the chiral extrapolation for the kaon semileptonic form factors, and their normal-
ization f(0) is determined with sub-% accuracy. We confirm reasonable consistency of the form
factor shape, namely the charge radii and slopes of the semileptonic form factors, with experiment.
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One of the largest uncertainty is the discretization error at a finite lattice spacing. It is important
to extend this study to finer lattices and heavy flavor physics. Simulations in these directions are
underway [18] using a computationally cheaper fermion action with good chiral symmetry [19].

We thank Johan Bijnens for making his code to calculate pion and kaon form factors in NNLO
ChPT available to us. Numerical simulations are performed on Hitachi SR16000 and IBM System
Blue Gene Solution at KEK under a support of its Large Scale Simulation Program (No. 15/16-09),
and on SR16000 at YITP in Kyoto University. This work is supported in part by the Grant-in-Aid
of the MEXT (No. 25287046, 26247043, 26400259 and 15K05065) and by MEXT SPIRE and
JICFusS.
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