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Covariant Rξ gauge fixing is notoriously difficult for large lattice volumes, large ξ and small
Nc. We thoroughly test different convergence techniques, which allows the gauge fixing of lattice
configurations with a total volume of (3.25 fm)4, up to ξ = 0.5. We are able to study the gluon
propagator in the infrared region and its dependence on the gauge fixing parameter ξ . As ex-
pected, the longitudinal gluon dressing functions stay constant at their tree-level value ξ . Similar
to the Landau gauge, the transverse Rξ gauge gluon propagators saturate at a non-vanishing value
in the deep infrared for all values of ξ studied. We compare with very recent continuum stud-
ies and perform a simple analysis of the found saturation with a dynamically generated effective
gluon mass.
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Figure 1: (left) Gluon propagator and (right) gluon mass computed in the Landau gauge [3].

1. Introduction

Dynamical mass generation in QCD and hadrons accounts for ∼ 98% of the visible mass in
the universe. Most of the mass of the light quarks is due to chiral symmetry breaking. An effective
gluon mass (as the photon mass in a superconductor) is a possible signal of confinement [1, 2]. If
it exists, the gluon mass should appear in the gluon propagator. However Green’s functions (prop-
agators and vertices) depend on the gauge fixing. In the case of the Landau gauge, the transverse
part of the gluon propagator saturates in the IR, as illustrated in Fig. 1. This can be interpreted as
an evidence for a dynamically generated mass [3]. While there is yet no unique way to define the
gluon mass, in general the gluon mass m2(p2) is a monotonically decreasing function, power-law
suppressed in the UV. The question is, what happens in other gauges? So far , we don’t really know.

Here we study in Lattice QCD the well known renormalizable-ξ covariant gauges (including
Landau gauge ξ = 0 and Feynman gauge ξ = 1 ). Reliable lattice calculations in renormalizable-
ξ (Rξ ) covariant gauges have not been systematically pursued previously. Rξ gauge fixing (GF)
lattice implementation has in fact proven to be quite complicated [4]. Recently some success was
achieved [5], however one still encounters significant convergence problems in realistic lattices, i e
for larger GF parameter ξ and lattice size, and smaller number of colours Nc and lattice coupling
β .

We report on our success [6] to GF in a realistic lattice and present the SU(3) gluon propagator
in Rξ gauges for a relatively large lattice volume (3.25 fm)4 and a GF parameter up to ξ = 0.5.

2. Rξ gauges framework and gauge fixing algorithm

2.1 Rξ gauges

In the continuum, Rξ GF is achieved by adding to the SU(Nc) Yang-Mills action the term,

SGF =
∫

d4x
[

bm
Λ

m− ξ

2
(bm)2

]
, (2.1)
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(a) Histogram of the number of iterations nec-
essary to converge the Rξ GF, with FFT steep-
est descent minimization of the functional θ .
We illustrate 200 uncorrelated configurations for
ξ = 0.3 and L = 32. After 50000 iterations we
stop FFT and cycle through other GF techniques,
OVR, STR, RGT until convergence is reached.

(b) (top) The 324 values of ∇·Am evaluated for a
configuration gauge fixed at ξ = 0.5, grouped in
5000 bins, compared with the Gaussian Λm with
standard deviation

√
ξ ' 0.316. (Bottom) Plot

of d = ∇·A4−Λ4; the two distributions coincide
within

√
θ precision.

Figure 2: Our approach to achieve the Rξ GF within the desired precision of θ < 10−15.

where ξ is the GF parameter, bm are Nakanishi-Lautrup multipliers and Λm = Λm[A] is the GF
condition. Going on-shell, ξ bm = Λm, and the GF action takes a Gaussian form,

SGF =
1

2ξ

∫
d4x(Λm)2 . (2.2)

Rξ gauges are obtained when the linear condition is chosen

Λ
m = ∂

µAm
µ . (2.3)

When the gluon propagator is decomposed in transverse / longitudinal components,

∆µν(q) = (gµν −qµqν/q2)∆T(q2)+(qµqν/q2)∆L(q2) , (2.4)

Slavnov-Taylor identities ensure that q2∆L = ξ to all orders.
In the lattice, we use the Wilson action and the gauge links Uµ , are related to the gauge fields,

Aµ(x+ êµ/2) =
Uµ(x)−U†

µ(x)
2ig0

∣∣∣∣∣
traceless

. (2.5)

In Rξ gauges, besides the usual integration over the link variables Uµ(x) , one has to integrate over
the fields Λ = ∑m Λmtm, where each Λm is a Gaussian distribution with variance 2Nc

β
ξ .

The procedure for GF requires to gauge rotate all link variables [4, 5],

Uµ(x)→ g(x)Uµ(x)g†(x+ êµ) (2.6)

where g are elements of the SU(Nc) gauge group.
In the Landau gauge case, which is the ξ → 0 limit of the Rξ gauges studied here, the GF is

implemented minimizing the functional, −ReTr ∑x,µ g(x)Uµ(x)g†(x+ êµ) , since the minimization
ofr any functional of Aµ(x) directly leads to the condition ∇·Am = 0.
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(a) Gluon longitudinal Rξ dressing function
q2∆L, compared to the theoretical value ξ .
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(b) Gluon transverse Rξ dressing function q2∆T,
(renormalized at µ = 4.317 [GeV] ).

Figure 3: Guon propagator dressing functions.

2.2 Rξ gauge fixing algorithm

In the general case of a non-vanishing ξ , a more complicated functional than the one of Landau
GF needs to be minimized. In practice, the gauge transformation, g = ∏ j δg j, is built as a
product of a sequence of infinitesimal gauge transformations. For each infinitesimal transformation,
δg j = 1+ i∑m wm tm, we minimize the Rξ functional with respect to wm. We directly utilize the
linear gauge condition of Eq. (2.3), to define our functional θ , depending on Uµ(x) via Eq. (2.5),

θ =
1

NcL4 ∑
x

Tr [∆(x)∆†(x)] ,

∆(x) = ∑
µ

g0

[
Aµ(x+ êµ/2)−Aµ(x− êµ/2)

]
−Λ(x) . (2.7)

When θ → 0, then ∆(x)→ 0 and we reach the desired gauge condition ∇·Am = Λm of Eq. (2.3).
Thus, choosing wm = α∆m, where α is a relaxation parameter to be optimized, should reduce

∆ with a steepest descent method. Our goal is to converge to a vanishing ∆(x) in all lattice points
x. Based on our experience of studying gluon propagators with Landau GF, we aim at a very small
θ < 10−15. However, this turns out, in practice, to be very difficult in a realistic lattice!

We opt to extend our fully parallel and very fast GPU codes for Landau GF [7], for a thorough
optimization of all possible techniques to minimize θ . We combine three different GF techniques
optimized in the Landau case [7],

• the Fast Fourier Transform - accelerated steepest descent (FFT),

• Over Relaxation (OVR)

• and Stochastic Relaxation (STR).

Each one of theses techniques, with an optimized convergence parameter α has a similar Rξ GF
success rate of only ∼ 75% for ξ = 0.3 and ∼ 40% for ξ = 0.5. This is illustrated in Fig. 2a

After a large number of tests performed in our GPU servers, we finally find a solution. Cycling
through FFT, OVR and STR, for our hardest case of ξ = 0.5, we increase the convergence success
rate up to∼90% . Finally, for the remaining 10% cases, we perform a random gauge transformation
(RGT), and restart the combined algorithm, till convergence is total [6, 8], see Fig. 2b.
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(a) We show he Rξ transverse propagator ∆T

(renormalized at µ = 4.317 [GeV] ).
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(b) Ratio of Rξ transverse propagators to the
Landau gauge transverse propagator.

Figure 4: Transverse gluon propagators for different Rξ gauges. The grey crosses are computed
with the Landau gauge for a volume of 804 and provide an estimate for the volume effects expected
at q2 = 0 [11].

3. Results and comparison with continuum studies

3.1 Results for the gluon propagator

We now compute the gluon propagator for β = 6.0 in a 324 lattice. Linear covariant gauges
on the lattice requires, not only an integration over the ensemble of configurations Uµ(x) [9], but
an additional integration over the N2

c −1 Gaussian distributed Λm fields. For the Λ integration, we
consider 50 different Λ’s for each configuration Uµ . Then, for each configuration of Uµ(x) and
Λ(x) field, GF is applied. The lattice gluon propagator, a two-point correlation function, reads

〈Am
µ (q̂)A

n
ν(q̂

′)〉= δ
mn

∆µν(q)L4
δ (q̂+ q̂ ′) , (3.1)

where we Fourier transform from the positions x to the momenta q. The transverse and longitudinal
SU(3) propagator form factors are [10, 11],

∆T(q2) =
1

24L4 ∑
µ,ν ,m

(δµν −qµqν/q2)〈Am
µ (q̂)A

m
ν (−q̂)〉,

∆L(q2) =
1

8L4 ∑
µ,ν ,m

qµqν/q2〈Am
µ (q̂)A

m
ν (−q̂)〉. (3.2)

Analytically, since the Rξ longitudinal propagator ∆L remains equal to the tree level one. we
should have q2∆L ≡ ξ . The values of ξ chosen are ξ = 0.1, 0.2, 0.3, 0.4, and 0.5. Indeed a fit of the
data to a constant, show in Fig. 3a, yields ξ = 0.103(2), 0.203(2), 0.302(3), 0.402(3) and 0.502(3)
respectively,

The Rξ gluon transverse dressing function q2∆T is fully dynamical and non-perturbative. The
simulated volume is (3.25 fm)4, large enough to resolve the onset of the non-perturbative effects.
For comparison, the Landau gauge results obtained for a symmetric lattice of L = 80 and β = 6.0
(gray crosses) are also plotted in Fig. 3b.
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(a) Previous theoretical prediction of the gluon
propagator [12].
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(b) Reconstructed gluon mass in the Rξ gauges,
using the Nielsen identities of Ref. [12].

Figure 5: Comparing with continuum studies and reconstructing the gluon mass.

We plot the gluon Rξ transverse propagators in Fig. 4a. As in the Landau gauge, we find they
show an inflection point, implying that the associated spectral density is not positive definite; it is
interpreted as a manifestation of confinement. They have a marked tendency to flatten towards the
small momentum region, thus providing strong evidence that also in the ξ 6= 0 case the behaviour of
the lower modes of the lattice gluon field are tamed by the dynamical generation of a (momentum-
dependent) gluon mass. The Landau gauge data on very large volumes suggest that simulations on
larger physical volumes suppress the gluon propagator in the infrared region. This would only lead
to at most to a decrease of about ∼ 10% of ∆T at small momenta for the Rξ transverse propagator.

We also plot the ratio, in Fig. 4b, of the transverse propagator to the Landau gauge propagator
∆

ξ=0
T as a function of the momentum for the two values ξ = 0.1 and ξ = 0.5. The data confirms an

IR hierarchy such that ∆T (slightly) decreases for increasing values of the gauge fixing parameter.
The maximum difference is of ∼ 10% for ξ = 0.5.

3.2 Continuum studies, gluon mass

Our data for the gluon propagator is comparable to the one predicted in Ref. [12], shown in
Fig. 5a, who include Nielsen identities and a gluon mass. Applying the same analysis of of Ref.
[12] to our Rξ lattice propagators, we find that for small ξ , the Rξ dynamical mass behaves like

m2(q2) =

[
a(ξ )+ c(ξ )

(
q2

µ2

)ξ

log
q2

µ2

]
m2

ξ=0(q
2), (3.3)

where m2
ξ=0 is the Landau gauge gluon mass and to lowest order in the gauge fixing parameter,

a(ξ ) = 1+a1ξ , c(ξ ) = cNIξ .
Using as input our Rξ = 0 (Landau gauge), L = 32, β = 6.0 data for the gluon and ghost prop-

agators we obtain the Landau gauge dynamical mass m2
ξ=0(q

2). We then solve the renormalization
group improved equation and determine as well as the numerical value cNI ≈ 0.32. We also deter-
mine the numerical value of a1 by requiring that the dynamical mass equals the value of ∆−1

T (0) for
the corresponding value of ξ . We obtain a1 ≈ 0.26. Finally including the statistical errors on the
lattice propagators, we obtain the gluon running mass for the different Rξ , plotted in Fig. 5b.
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4. Conclusions and outlook

From the numerical point of view, our most intensive task [6, 8], is the gauge fixing due to
the large number of GF’s required and algorithmic issues. Up to large ξ ’s and volumes, with a
proper combination of various steepest descent methods, we solve the GF in Rξ gauges . We also
compute the lattice SU(3) gluon propagators in Rξ gauges, for a lattice volume large enough to
access the IR dynamics. Our ∆T(q2) propagators are ∼ similar for ξ = 0.0− 0.5 : an inflection
point in the few hundreds MeV region and a saturation in the IR. Our propagators are in agreement
with very recent continuum analytic studies, and we estimate the dynamically generated Rξ mass.
This analysis suggests that dynamical gluon mass generation is a common feature of all Rξ gauges
in SU(3) Yang-Mills theories.
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