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A non-perturbative renormalisation prescription for the energy-momentum tensor, based on
space-time symmetries along the Wilson flow, has been proposed recently in the context of 4-
dimensional gauge theories. We extend this construction to the case of a scalar field theory, and
investigate its numerical feasibility by studying Ward identities in 3-dimensional scalar field the-
ory. After introducing the Wilson flow for the scalar field theory we discuss its renormalisation
properties and the determination of the renormalisation constants for the energy-momentum ten-
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1. Introduction

The Wilson flow is a promising tool to study strongly coupled theories on the lattice. Re-
cent studies of the renormalisation of the coupling and composite operators on the lattice involv-
ing the Wilson flow prove the success of the method, see e.g. refs. [1-3] and references therein.
The application of the Wilson flow for the renormalisation of the energy-momentum tensor has
been proposed in ref. [4]. For an alternative approach to determine the energy-momentum tensor
see e.g. refs. [5,6]. We further the investigation of the Wilson flow by studying its use for the
non-perturbative computation of the energy-momentum tensor in 3-dimensional scalar field theory.
Choosing a single component scalar field theory in only 3 dimensions gives us the opportunity to
gain a deeper understanding on a theoretical and numerical level as it has the advantage of low
computational costs while maintaining high statistics.

Scalar field theory in 3 dimensions with negative mass squared exhibits an infrared fixed point
and can thus serve as a toy model for the research of more advanced theories with an infrared
fixed point. Studying the energy-momentum tensor in this context will enable us to investigate the
scaling behaviour of such theories, as the trace of the energy-momentum tensor 7y, is related to
the beta-function,

([ 5T 9 (x)...0 ():Bk 5+l +d¢>> (O(61)-.-0(x0)). (1.1)

where By are the beta functions, g, are the couplings of the theory, 7y = —ﬁ ,U,%Zq), Zy is the field
renormalisation factor, and dy is the dimension of field ¢. This relation can be found by using the
Callan-Symanzik equation and the dilatation Ward identity.

There are two relevant operators and one marginal operator near the Gaussian fixed point
in 3 dimensions, ¢2, ¢* and ¢° with couplings m?, A and 7, respectively. The coupling space
and renormalisation group flow of the theory are sketched in fig. 1. There are two fixed points,
a Gaussian or ultraviolet fixed point, and a Wilson-Fischer or infrared fixed point. The surface
indicated is the critical surface where the dimensionful renormalised couplings mg and Ag are zero,
and physics is constant. On this surface the renormalisation group flow is directed toward the
infrared fixed point. The red line is the critical line that connects the two fixed points.

IR Fixed Point

UV Fixed Point

Figure 1: Sketch of coupling space and RG flow of ¢° theory.



Energy-momentum tensor in scalar field theory from the Wilson flow Susanne Ehret

2. The gradient flow in scalar field theory

To improve readability we will speak only of ¢* theory in this section. The ¢°® term does not
contain additional information relevant for the following discussion. The Euclidean action for ¢*

theory is
_ p. (1 2, 15 & 4
S_/d X <2(8u¢) +om*9P+ 0t ). 2.1)
We define the flow equation [7]
IP(x) = @), @(¥)l—o=9(), 22)

where the flow time ¢ and the flow field ¢, were introduced. The flow equation determines the
evolution of ¢, along ¢. The flow field is bounded to be the scalar field ¢ at zero flow time. The
solution to the flow equation (2.2) shows that the flow has a smoothing effect on the fields at the
boundary which are smeared with radius r = /8.

It is now possible to formulate a higher dimensional theory by considering the flow time as an
additional direction [8]. The action is then composed of the action of the boundary theory plus a
part that accounts for the gradient flow which is implemented using a Lagrange multiplier field L,

S= Sboundary + Sblllk7 2.3)
Spulk = / di / dPx L(1,x) (3 — 9%) o(t.%). (2.4)
0

Integrating out L in the path integral gives a delta function which ensures that the field ¢ is the
solution of the flow equation ¢,. The Feynman rules of the 3 4 1 dimensional theory are drawn in
fig. 2. The flow field propagator includes the propagator of the scalar field at r = s = 0. In addition,
there is a propagator coming from the newly introduced field L. The 4-point vertex exists only at
the boundary since there is no additional interaction term in the bulk action.

1

) &(s,q) 767(I+s)p2
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Figure 2: Feynman rules in 3+1 dimensions for scalar ¢* theory plus gradient flow.

The bulk fields ¢ and L do not require renormalisation. Since there is no interaction term
in the bulk, there are no divergences coming from loop diagrams in the bulk. On the other hand,
renormalising the bulk fields leads to infinite counterterms in the bulk for which no counter part in
the form of loop divergences exists.

If we were to choose the flow equation differently, e.g. as the gradient of the action as it is
done for pure gauge theory [9], the flow equation reads

_ _ A
0@ = > —m* @, — ;(pf. (2.5)
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The Feynman rules in the 3+1 dimensional theory change accordingly. There is now a mass in the
exponential function in both propagators, and an additional vertex in the bulk, see fig. 3.

+o— ,,,,, )

Figure 3: Additional vertex to the Feynman rules when defining the flow as gradient of the action.

Following [8] one can compute the divergences of the self-energy of the flow field propa-
gator in 4 dimensions. The divergences disappear in 3 dimensions. However, it turns out that
the existence of the terms proportional to the couplings m? and A in the bulk action lead to non-
renormalisable divergences. Renormalising the couplings m? = Z,, m% and A = Z; A yields for
the modified bulk action

Sbulk = /Owdt/de (L(t,x) (8, —9*+7, m,ze) o(t,x)+ L(t,x) Z, ;LIf (p(t,x)3) ) (2.6)

The Z factors contain divergences that enter into counterterms in the bulk for which no comple-
mentary loop divergences exists. Hence, it is not possible to have any bare couplings in the bulk
action and we are left with the simple flow equation defined in eq. 2.2.

3. Lattice setup

The naive discretisation of the complete action and the flow equation yields,

& 3 Lo o 1,0 A 4 Mg
S=a ;(2(8&) +§m o +5¢ +a¢ 3.1)
3¢ =%, @ lso =9, (3.2)

where 0 is a lattice derivative, and 92 is the lattice Laplacian. The flow equation can be imple-
mented by numerical integration, or one can use its solution directly.

The theory has two phases if we allow for negative bare mass square. Fig. 4 shows the plot of
the phase transition where the renormalised mass m% = 0, at = 0.
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Figure 4: Phase diagram of ¢ theory at = 0.

The algorithm used consists of two parts as suggested in [10]: a Swendsen-Wang update and a
Metropolis update. Our measurements are sufficiently uncorrelated. The integrated autocorrelation
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m L | ©S) | t(¢?)
0.5231 | 8 | 0.5000 | 0.6989
0.4842 | 20 | 0.5507 | 0.5000
100 | 2.7522 | 8 | 0.5000 | 0.5308
100 | 2.7449 | 20 | 0.5005 | 0.6244
175 | 3.4118 | 8 | 0.5049 | 0.5000
175 | 3.4239 | 20 | 0.5000 | 0.5437

D N>

Table 1: Integrated autocorrelation times 7 for different values of A, m and L for action S and (pz.

time 7 [11] is monitored for all observables and is always about one half. It does not depend on
the lattice size, the value of the flow time, or in which phase we simulate. The integrated autocor-
relation times for different values of A, m and L close to the phase transition for the observables
action S and flow field squared ¢ are listed in tab. 1. Using a cluster algorithm ensures that we
do not observe any critical slowing down in our simulations. Measurements are taken every 200
Metropolis and 40 cluster sweeps. The simulation time is short with e.g. about 8 hours for 33000
measurements on an 8 lattice run on one core of an Intel Xeon E5620 at 2.4 GHz.

4. Ward identities and energy-momentum tensor

In the continuum the translation Ward identity for scalar field theory reads
<5x,pP> = _<P auTup(x»z 4.1
where P is an arbitrary probe observable, and & is a local operator of translation defined by

opP

On the lattice on the other hand, the lattice regularisation breaks translation symmetry explicitly
and an additional term appears in the Ward identity which now reads

(8pPy = (P (uTup +Rp) ). 4.3)

The operator Iép that accounts for the explicit symmetry breaking vanishes in the a — O limit.
However, subleading terms in Iép can combine with divergences and give finite contributions. Thus,
I?p and the energy-momentum tensor require renormalisation. The renormalised translation Ward
identity on the lattice is

(25 8:pP) = (P (Oullip] + [Rp])). @44

with the renormalised [Tﬂp] following from the mixing of Iép with all terms that are of equal or
lower dimension and that possess the same symmetry properties,

A cl S A C2 C3 a a C4 CS ~ ~ C6
[Tupl = 5 Iu®9p9 + Sup (2 ¢2+5 PP+ 0%+ > ;%‘P@W%—a ¢°

+c7 (])92‘1) +c3 (Pguéu‘i’ +C9> +c1o (9;19;) - Supéz) > 4.5)
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Here, the Einstein summation convention does not hold and the only sum is given explicitly. The
operator corresponding to cig can be used instead of ¢9” épq) [13].

It is now necessary to determine the 10 coefficients c; to cjg, and Zg which can be computed
independently [4]. Choosing a probe observable 7, that is a function of fields at non-zero flow time
the coefficients can be tuned such that the energy-momentum tensor is finite and [Iép] —01[4]. Up
to subleading corrections, and noticing that two terms drop out in the Ward identity, we find that
we need to solve a system of 8 equations with 8 (or more) skilfully chosen probe observables,

Zs VW ==Y ¢; M, (4.6)

Here, V*) stands for the 8 expectation values on the left hand side of eq. (4.4) for 8 different probes,
and M%) is the matrix whose rows are made up of the derivative of the remaining 8 operators in
[Tup]- The dilatation Ward identity can be used in order to determine the two coefficients that
cannot be found with the translation Ward identity.

As a preliminary exercise, we computed Zg for m% > 0 using [4]

Zs (@1(T,2)a Y 8yp Pa(t,x)) = (@1(T,2) Jp P (t,x) ) + O (e) . (4.7)

yeD
The calculation has been performed in a Monte Carlo simulation, as well as in lattice perturbation

theory. For @, (7,z) = ¢(t,z) and ®,(7,x) = ¢(z,x) the right hand side of the perturbative formula
is

LN iple—)_Pp —otpp—iapy 2
——VYe —P ¢ 1+0(A 4.8
FL (1+0() (4.8)
and the left hand side yields
ia® ip—x)_ Do —ip—iap,)2
~Zs 73 Y J(t,x0,y)) e e P2 (14+0(R)). (4.9)
yeD 4 ms+p

The sum over y is not carried out over the entire lattice but over a smaller domain D. p is the lattice
momentum, and J(¢,x;s,y) is the Jacobian of the transformation @;(y) — @,(x) [12],

1 .
J(t,x5,5) = 0(t =5)75 Y e R ek, (4.10)
p

The numerical and analytical calculation agree. This can be seen in fig. 5 which shows the
results for Zg of both methods as functions of the flow time at a random test value A = 1.25.

5. Summary

The gradient flow for scalar field theory in 3 dimensions, and the applicability of the Wil-
son flow for the determination of the renormalised energy-momentum tensor were discussed. We
found that in principle it is possible to find a meaningful formulation of the energy-momentum
tensor on the lattice. Inspecting a scalar field theory and a small number of dimensions has the
advantage of being numerically cheap. At the same time we increase the number of operators that
contribute to the renormalised energy-momentum tensor compared to gauge theory. The challenge
is to make the method numerically effective. Future work will show if an explicit determination of
the renormalised energy-momentum tensor is realisable in practice.
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Figure 5: Computation of Zg in a Monte Carlo simulation and lattice perturbation theory for A = 1.25.
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