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Scale invariance, or more precisely conformal invariance has become a fundamental concept in
understanding the universal aspects of the nature from the Planck scale to the Hubble scale [1][2].
Obviously, the central question is to locate the IR fixed point within a given class of theories. In this
proceeding, we report our proposal presented in [3]. There we have proposed a novel and simple
RG method to specify the location of the IR fixed point in lattice gauge theories by studying the
scaling behavior of the propagator. We have applied the technique to theSU(3) gauge theories with
Nf fundamental fermions (within the conformal window [4][5][6]), and estimated the anomalous
mass dimension. We have completed this program forNf = 16,12,8 and Nf = 7, and indeed
identified the location of the IR fixed points in all cases.

We constructively define gauge theories on Euclidean planeR4 as the continuum limit of lat-
tice gauge theories on the Euclidean lattice of the sizeNx = Ny = Nz = N andNt = rN with r = 4
throughout the article. Our general argument that follows can be applied to any gauge theories with
fermions in arbitrary (vector-like) representations, but to be specific, we focus onSU(3) gauge the-
ories withNf fundamental Dirac fermions. For the lattice regularization of the action, we employ
the Wilson quark action and the RG improved gauge action[7].

Given the regularized action, the theory is defined by two parameters; the bare coupling con-
stantg0 and the bare degenerate quark massm0 at ultraviolet (UV) cutoff. We also use, instead
of g0 andm0, β = 6/g2

0 and the hopping parameterK = 1/2(m0a+4). The hopping parameter is
related to the renormalized quark massmq thorugh the Ward-Takahashi identity.

One of the most important observables we will study is thet dependence of the propagator of
the local meson operator in theH channel:

GH(t) = ∑
x
⟨ψ̄γHψ(x, t)ψ̄γHψ(0)⟩ , (1)

where the summation is over all the spatial lattice points. In this paper, we mostly focus on the
pseudo-scalar (PS) channelH = PS, and the subscriptH is suppressed hereafter.
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Figure 1: Scaled effective mass plots forNf = 16 at β = 11.0 and10.0: three sets of symbols areN = 16
(red square),N = 12 (green circle),N = 8 (blue triangle).
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Figure 2: Scaled effective mass plots forNf = 16 at β = 10.5: the left panel is an enlarged one of the right
panel; three sets of symbols areN = 16 (red square),N = 12 (green circle),N = 8 (blue triangle).

In order to investigate the larget behavior of a propagator, we define the effective massm(t)
through

cosh(m(t)(t −Nt/2))
cosh(m(t)(t +1−Nt/2))

=
G(t)

G(t +1)
. (2)

Let us study the RG properties of the propagator in the vicinity of the fixed point. The RG
equation for the RG transformation induced by the change of the UV renormalization scaleµ ′ =

µ/s, followed by a space-time scale change by a factor1/s (see e.g. [8]), relates the propagator
with different parameters as

G(t;g,mq,N,µ) =
(

N′

N

)3−2γ
G(t ′;g′,m′

q,N
′,µ). (3)

HereN′ = N/s andt ′ = t/s. The relation betweeng′ andg andm′
q andmq are determined by the

beta functionB and the mass anomalous dimensionsγ.
Let us first discuss the case in which we are at the fixed point, i.e.g′ = g= g∗ andm′

q =mq = 0
so thatB = 0 andγ = γ∗. In this case, the propagator may have simplified notation as

G̃(τ,N) = G(t,N). (4)

with τ = t/Nt . The variablet takes0,1,2, · · · ,Nt − 1 so that0 ≤ τ ≤ 1. In terms ofτ , the RG
relation eq.(3) reduces to

G̃(τ;N) =

(
N

′

N

)3−2γ∗

G̃(τ;N
′
) . (5)

To state our proposal concretely, we define the scaled effective massm(t;N) as

m(t,N) = N ln
G(t,N)

G(t +1,N)
. (6)

In the continuum limitN → ∞ Eq. (6) reduces to the form

m(τ,N) =−∂τ lnG̃(τ ,N) (7)
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The crucial observation, which will be the core of our proposal is that, combining Eqs.(5) and (7),
the scaled effective mass does not depend onN as a function ofτ :

m(τ ,N) =m(τ,N
′
) (8)

at the fixed point. Therefore, the agreement of the scaled effective mass as a function ofN andτ
are stringent tests of the fixed point.

Our strategy is as follows. With givenNf andβ , we tune the quark mass to be zero. Then
we numerically compute the meson propagator on the lattice. For each choice of the lattice size
N, we plot the effective mass defined by Eq. (2) in terms of the scaled timeτ. As we explained,
generically, the scaled effective mass do not coincide with each other as a function ofτ at a given
value ofβ but different values ofN. However, if we find the fixed point valueβ , the plots for
differentN must coincide with each other.

In this article, we perform numerical simulations on the three lattices with size83×32,123×
48and163×64with the aspect ratio ofr = 4. Let us show in Fig. 1 the scaled effective mass plots
in two cases of many such examples: we takeNf = 16 at β = 11.0 andβ = 10.0. The asymptotic
behaviors of three sets of data points and the lines connecting them onN = 8,12 and16 lattices,
do not coincide with each other. We may conclude that these values ofβ do not correspond to the
fixed point. On the other hand, as we will see in Fig 2, if we takeβ = 10.5, then the three plots and
the lines do coincide within the standard deviation. Based on the RG relations, we claim that this
is the value of the gauge coupling constant at the fixed point.

We perform this program forNf = 7,8,12,16 on lattices with size83 × 32,123 × 48 and
163×64. By narrowing down the region where the scaled effective massm(τ ,N) becomes close
for different N, we identify the pointβ ∗ where they agree with each other within one standard
deviation.

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 0  0.1  0.2  0.3  0.4  0.5

M
(t

)

t/Nt

Effective mass: Nf=12; beta=3.0, K=0.1405

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 0  0.1  0.2  0.3  0.4  0.5

M
(t

)

t/Nt

Effective mass: Nf=08; beta=2.4, K=0.147

Figure 3: Scaled effective mass plots forNf = 12 at β = 3.0 andNf = 8 for β = 2.4; three sets of symbols
areN = 16 (red square),N = 12 (green circle) andN = 8 (blue triangle).

The algorithms we employ are the blocked HMC algorithm [9] in the caseNf = 2N and the
RHMC algorithm [10] for Nf = 1 in the caseNf = 2N+ 1. The simulation parameters can be
found in [3].
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Figure 4: Scaled effective mass plots forNf = 7 at β = 2.3: three sets of symbols areN = 16 (red square),
N = 12 (green circle) andN = 8 (blue triangle).
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Figure 5: Propagators forNf = 8 at β = 2.4: three sets of symbols areN = 16 (red square),N = 12 (green
circle) andN = 8 (blue triangle).

Now, let us show the results, starting with theNf = 16 case. In order to find the fixed point
from our proposal,we make several trials including those atβ = 10.0,10.5,11.0, and11.5. We
find the three sets of data and the lines connecting them are apparently different from each other at
β = 11.0 (Fig. 1; left panel) and they approach closer by decreasingβ as11.0,10.5. On the other
hand, atβ = 10.0 (Fig. 1; right panel) they are apart each other again but they approach closer by
increasingβ as10.0,10.5. This suggests that there is an IR fixed point betweenβ = 10.0 and11.0.
We indeed find, as shown in Fig. 2, that the three sets of the scaled effective mass plots are almost
degenerate atβ = 10.5 andK = 0.1292. We see that three lines almost overlap forτ ≥ 0.1. Only
in the smallτ region (τ ≤ 0.1) we see the differences. We interpret the difference forτ ≤ 0.1 is
due to the fact thatN is not large enough to remove the effect of the UV cutoffµ = a−1.

The fact that our method identifies the location of the IR fixed point at a value expected from
the perturbation theory [4], together with the fact that three lines almost overlap, strengthens our
confidence in the validity of our approach.
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We make similar process forNf = 12,8 and7 as theNf = 16case. In Figs. 3 and 4 are shown
the results. The qualitative feature of our results are the same. If we choose a very particularβ for
eachNf , the data and three lines almost overlap forτ ≥ 0.1, as shown in the Figures. In the small
t region (t/Nt ≤ 0.1) we find the differences. Since they are similar to the case ofNf = 16, we do
not present them here.

Finally we identify the IR fixed points atβ ∗ = 10.5±0.5 for Nf = 16; 3.0±0.2 for Nf = 12;
2.4±0.1 for Nf = 8; and2.3±0.05 for Nf = 7.

On the other hand, in theNf = 6 case, there is a chiral phase transition point at finiteβ when
N is finite[11]. If we would perform a program similar to the above (by fixingβ and increasing the
lattice sizeN), then at someN the system would end up with the confining phase rather than the
chiral symmetric phase (to which the conformal fixed points belong). Thus the IR behavior would
be completely different. It cannot be a conformal field theory.

Thus our results at the finite lattice size (up to163×64) are consistent with that the conformal
window is7≤ Nf ≤ 16. However we do not exclude the possibility of the “walking scenario" that
the RG beta function is anomalously small near the edge of the conformal window (e.g.Nf = 7
or 8), and for a largerN an undiscovered chiral phase transition point happens to appear at some
value ofβ and the chiral phase transition eventually occurs in the infiniteN limit.

We would like to stress that a conformal field theory is completely different from QCD in
the point that there is no dimensional parameter such asΛQCD. In QCD if Na is large enough
compared withΛQCD, boundary effects can be neglected and it can be assumed the limitN = ∞ is
taken. However the boundary effects are essential even at any large latticeN in the conformal field
theories because there is no other natural scale to compare. Note that our propagators are functions
of the scaled timeτ which takes value0.0≤ τ ≤ 1.0. Clearly the function depends on the boundary
condition as well as the aspect ratio even if we takeN → ∞ limit. Of course, to be clear, this does
not mean that thelocal physics of the conformal field theory depends on the boundary conditions
we use. We note the zero momentum propagator in our definition (1) may not be a local variable
because we have summed over spatial coordinates before taking the continuum limit.

In the near future we would like to perform the program with larger lattice sizes and more
statistics to derive the anomalous mass dimension using Eq.5, and the relation of the eigenvalue
density of the Dirac-Wilson operator and the anomalous index[8][12][13]. It would be intriguing
to compare them with the value from the unparticle meson model.

The calculations were performed with HA-PACS computer at CCS, University of Tsukuba and
SR16000 at KEK. We would like to thank members of CCS and KEK for their strong support for
this work.
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