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QCD at non-zero chemical potentigt)for quark number has a complex fermion determinant
and thus standard simulation methods for lattice QCD cabeatpplied. We therefore simulate
this theory using the Complex-Langevin algorithm with Gaugpoling in addition to adaptive
methods, to prevent runaway behaviour. Simulations aréopeed at zero temperature on a
12* lattice with 2 quarks which are light enough thag /3 is significantly larger thamn,/2.
Preliminary results are qualitatively as expected. Thelgpnamber density is close to zero for
U < my/3, beyond which it increases, eventually reaching its séitum value of 3 foru suffi-
ciently large. The chiral condensate decreases &sincreased approaching zero at saturation,
while the plaquette increases towards its quenched valuehade yet to observe the transition
to nuclear matter gt = my/3, presumably because the runs fobetweenmy /3 and saturation
have yet to equilibrate.
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1. Introduction

QCD at a finite chemical potentiglfor quark number has a complex action which prevents the
direct application of simulation methods based on importance sampling. Theliareguation is
a stochastic differential equation for the evolution of the classical fielddistiious time, which
does not rely on importance sampling. Itis, in fact, a special case of tir@hyiolecular-dynamics
algorithm, where each trajectory consists of a single update.

The Langevin equation can be extended to complex actions by complexifyrfgltts [1,[R,

B Bl. In the case of QCD this means promoting the gauge fields 80(8) to SL(3,C). Unfor-
tunately, there is no proof that the long-time evolution of the fields under thisplx Langevin
equation (CLE) provides a limiting value for observables. Even when thisgss does converge,
the values it provides for observables are not guaranteed to betorre

After successfully applying the CLE to spin models (see for exanjple [&)ple were en-
couraged to apply it to lattice QCD at finite Early attempts at applying the CLE to QCD were
stymied by runaway behaviour, which was not corrected by adaptiveaaietiRecently it has been
noted that at least some of this undesirable behaviour is due to the prodottinbounded gauge
transformations of compact gauge fields. Such behaviour can be betioy gauge transforming
to a gauge which minimizes the magnitudes of the gauge fields and hence theicalistan the
SU(3) manifold[$]. This is called Gauge Cooling.

This has revived interest in the CLE for QCD at finjie These methods have been tested on
simple models and for quark masses large enough that hopping-param#tedmean be applied
[@. 8 @.[Z0[T[T2]. In addition, studies have been made of the conslitioder which the CLE
converges to the correct resulfs][{3] [4, [13.[16[T7[ 18, 19]. Q@i u and small masses has
been simulated and the results compared with the heavy quark methods géar eassed [20].
Very recently this has been extended to larger lattices at finite temperaturess the transition
from hadron/nuclear matter to a quark-gluon plasma is observed anisrasel compared with
those from reweighting methods J21].

We are simulating QCD at zero temperature and fipiteor light quarks using the CLE, to
test directly if it converges and produces believable results. We grpseliminary results of our
explorations.

2. Complex Langevin for finite density Lattice QCD

If S(U) is the gauge action after integrating out the quark fields, the Langevirtieqdiar the
evolution of the gauge fields in Langevin timet is:

/d .5
—i <aul> U t= —|6—UIS(U)—|—I7| (2.1)

wherel labels the links of the lattice, angl = n?A2. Here A, are the Gell-Mann matrices for
SU(3). n{(t) are Gaussian-distributed random numbers normalized so that:

(NRONP()) = 5% 6(t —t) (2.2)
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The complex-Langevin equation has the same form except thatsla@e now ifSL(3,C). S
nowSU, u) is

QUm):BZ{l—%WNUUU+@wUU)ﬂ}—%ﬁﬂmWQLMH (2.3)

whereM (U, u) is the staggered Dirac operator. Note: backward links are represbpted !
notUT. Note also that we have chosen to keep the noise-vertaal. n is gauge-covariant
underSU(3), but not undeSL(3,C). This means that gauge-cooling is non-trivial. Referefde [18]
indicates why this is not expected to change the physics. After takidgU, 1) /U, the cyclic
properties of the trace are used to rearrange the fermion term so thaiging real foru = 0 even
after replacing the trace by a stochastic estimator.

To simulate the time evolution of the gauge fields we use the partial secondfana@lism
of Fukugita, Oyanagi and Ukawd. |42] 43] 24]

After each update, we gauge-fix iteratively to a gauge which minimizes therijnitarm —
gauge cooling[J6]:

Fwyi%zw@mwﬂmml—zzq (2.4)

whereV is the space-time volume of the lattice.

3. Zero-temperature simulations

31u=0

For u = 0 and infinite precision, Complex Langevin becomes Real Langevin. Alitgdre-
cision, roundoff allows the gauge fields to move (slowly) off ®ig(3) manifold. Forf3 = 5.2,
m= 0.05 on an 8 lattice we observe runaway solutions, even after Gauge Cooling!

For 3 = 5.6, m= 0.025 on a 12 lattice without gauge cooling, we observe runaway solutions.
With gauge cooling, the trajectory moves slowly off t8&)(3) manifold. We perform 100,000
updates with inputlt = 0.01. Adaptively rescaling to keep the drift(force) term under cormdiol
is reduced tatagaptive~ 0.00108, so the total run takes 108 Langevin time units, at the end of
which the unitarity normx 2.5 x 108, This we can probably tolerate, especially since we expect
it to improve with weaker couplings and larger lattices. Figyre 1 shows the tiolat@n of the
unitarity norm with and without gauge-cooling.

For this run plaquette= 0.4351(1), whereas the RHMC algorithm gives435884), and
(YY) = 0.2082), RHMC 021428). This is reasonable agreement for a short run with an in-
exact algorithm.

32 u+£0

We simulate on a Hattice at = 5.6, m= 0.025 withu > 0. Potentially importang values
includemy;/2 ~ 0.21 andmy /3 =~ 0.33 (masses from HEMCGC collaboratidn][45] p§, 27]). The
first is the position of the expected transition for the phase-quenchedxampgation. The second
is the approximate position of the expected transition to nuclear matter. We dtar Wimited
number ofu values to probe the various regions of the zero-temperature phasardiagrhe
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Figure 1: Unitarity norms for runs on a T2attice. Figure 2: Unitarity norms for run agi — 1.5 on a
Red curve is for run without gauge cooling. BlL!L 9 ) y =1

curve is for run with 10-step gauge cooling. 624 lattice with 5-step gauge-cooling.

values we choose arel) 0.2, 0.25, 035, 05, 09 and 15. In each case we start the simulation
from an ordered start and use 5-step gauge-cooling.

The first thing we look for, is evidence that the trajectories for a giverosparameters are
restricted to a compact region of tl8i(3,C) manifold. Without this it is (almost) impossible
for these simulations to produce meaningful results. If the simulations deemmo a limiting
distribution, one must then address the question as to whether this is thet tianie

At u = 1.5 we have performed sufficient updates for the unitarity norm to level dffie
unitarity norm appears to have leveled off, indicating that the system isiagobwver a compact
domain ofSL(3,C)% The evolution of this norm over the trajectory is shown in figdre 2. Thelquar
number densityjp = 2.9998 2). Hence the system has reached saturation wjete3, as expected
for large u. This is where each site is occupied with 3 quarks in a colour singlet statée(m).
The chiral condensat@iy) = 0.5(1.4) x 10-° — small and consistent with zero as expected. The
plaquetteP = 0.46792), consistent with the idea that, at saturation, the quarks are frozen @ut an
the system approximates quenched QCD. The quenched plagyéttem=6, P = 0.475532). The
total trajectory length= 46 time-units. In fact, after equilibratiodfagaptive~ 0.000066.

To date, of the otheu values we are simulatings = 0.1 andu = 0.2 appear to have equi-
librated. u = 0.25 appears to be close to equilibrating.= 0.35, u = 0.5 andu = 0.9 have yet
to equilibrate. We believe that this is because these runs need more utiategheir unitarity
norms have yet to reach values achieved forithe 0.1 simulations.

We present ‘data’ for the quark-number densities (fidlire 3), andctindensates (figufg 4)
as functions ofu with the understanding that the pointsiat= 0.35, 05 and 09 are expected to
change to become closer to the valueg at 1.5 as the system equilibrates. This is because, since
we start each run with all gauge links on t88(3) manifold, then as the system equilibrates, the
gauge links move away from thBU(3) manifold. Because not alls are equilibrated, we have
not included error-bars in these figures.
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Figure 3: Quark number density, normalized 10 ORg, -0 4. Chiral condensate, normalized to one stag-
staggered quark (4-flavours), as a functionuofer- oo 04 quark (4-flavours), as a function ef Errors
rors not known. not known

These preliminary results (each point represents 90,000 — 500,00pSwpdates of the lat-
tice) agree qualitatively with our expectations. The quark-number dersitgins close to zero for
u < my/3. For largerus it becomes non-zero, increasing towards its saturation value ofi3sas
increased. The chiral condensate decreases monotonically fram=t8 value asu is increased,
approaching zero at saturation. We will need to wait until each pointduatkaated to where it is
clear that the gauge fields are varying over a compact region i8ltf&C) manifold, before we
can get truly quantitative results. This takes longergdar my /3 since it takes more iterations to
invert the Dirac operator ag increases, until close to saturation, aftgljaptiveis smaller. Since
each run is starting from th8U(3) manifold, we expect metastability far > my/3 due to the
presence of a supposed first-order transitiop at my /3. This will also slow down the approach
to equilibrium just above the transition.

Because the runs fqr just above the transition have yet to equilibrate, we have been unable
to observe this transition to nuclear matter.

4. Summary, discussion and outlook

We apply Complex-Langevin simulations with gauge cooling to lattice QCD at finiaekgu
number chemical-potentiali at zero temperature. Our current simulations are on“aldtfice
with Ny = 2, B = 5.6, m= 0.025. Preliminary results look promising, but more simulations are
needed. Adaptive updating with gauge cooling does appear to stabilizégtréhan. However,
this only appears to work provided the gauge coupling is not too stronge $muge cooling does
not completely fix the gauge — the unitarity norm is invariant urléf3) gauge transformations —
it is possible that further gauge fixing might improve the situation. Fixing to barghuge in the
SU(3) subgroup suggests itself.
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We need answers to the following. Do these simulations converge andrgerneghe correct
limit? Do we observe a phase transition to nuclear mattgr-atmy /3? Is there a spurious transi-
tion atu ~ m;;/2? Do these simulations produce the expected 2-flavour colour-sunplerctor at
largepu (1 > my/3)?.

Smaller masses are needech= 0.01(?). We also need larger lattices, weaker coupling... Our
current code is inefficient serial code which needs improvement. Wigearvconvinced that the
algorithm works we will parallelize our code.

We will also investigate whether we can make a fully second-order versi@udition we will
investigate whether it makes sense to make a complex extension of hybrid rackdzuamics.
Would complex hybrid molecular-dynamics be expected to converge to tmectdimit, if the
complex langevin does? If so, such an algorithm would expect to be tasidnave smaller errors
than the complex-langevin methods.

A precise measurement of the valueLodt the transition to nuclear mattgr) would yield the
binding energy/nucleoref) in the absence of electromagnetic interactions, sinee (my — &) /3.
However, sincee, < 2%my, this will be a formidable task. More accessible nuclear physics will
be to study the propagation of hadrons in the nuclear-matter medium. If avdsr simulations
are successful, we will also simuldti = 3 and try to observe the 3-flavour colour-superconductor
with its colour-flavour locking.

We also plan to simulate at high temperatures, near to the finite-temperatueetgrestion,
and look for the critical endpoint. We will try to determine how good is the rasor-gas model.
Also planned are investigations of the phase structur@ef 1)-flavour QCD with independent
chemical potentials for th@u,d) ands quarks.
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