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The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of
quarks is a long-standing issue. Still, it is not definitely known if the transition is of first or
second order. Which of the two scenarios is realized has important implications for the physical
QCD phase diagram, and in particular it is important regarding the existence of a critical endpoint
at finite densities. Settling this issue by simulating at successively decreased pion mass was not
conclusive yet. Recently, an alternative approach was proposed, which relies on the nontrivial
phase structure of QCD at purely imaginary chemical potential induced by the Roberge-Weiss
symmetry. Using staggered fermions on Nt = 4 lattices, it was found that the transition is of first
order in the chiral limit. These findings have to be contrasted with other fermion discretizations.
We report on the status of our simulations with Wilson fermions following the same approach.
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Figure 1: Possible scenarios for the QCD phase diagram at µ = 0 as function of quark mass.

1. Introduction

The clarification of the order of the thermal transition in the chiral limit of Nf = 2 QCD is a
long-standing issue. Still, it is not definitely known if the transition is of first or second order. This
is depicted in Figure 1. Which of the two scenarios is realized has important implications for the
physical QCD phase diagram, and in particular it is important regarding the possible existence of a
critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion
mass was not conclusive yet, primarily because of the increasing demands of the simulations as the
pion mass is lowered (see e.g. [1] for references and a more detailed introduction to the topic).

Recently, an alternative approach was proposed [1], which relies on the nontrivial phase struc-
ture of QCD at purely imaginary chemical potential µI . In this region of phase space, one has
reflection symmetry and extended center (or Roberge-Weiss (RW)) symmetry [4]:

Z(µ) = Z(−µ), (1.1)

Z (µ) = Z (µ +2πik/Nc ) , k ∈ N . (1.2)

These symmetries limit the physically relevant region. Furthermore, at µI the sign problem is ab-
sent and standard simulation algorithms can be applied. Critical values of µc

I = (2k+1)π/Nc (k ∈
N) mark the boundary between adjacent center sectors. The phase transition between these sec-
tors is first order for high and a crossover for low temperatures. At the endpoint of the first order
line, this so-called Roberge-Weiss transition meets with the chiral/deconfinement transition famil-
iar from µ = 0. Consequently, the endpoint is mass-dependent and changes from a triple point
at low and high masses to a second order endpoint for intermediate masses. These regions are
separated by tricritical points. When mass and Nf are changed, a phase diagram similar to those
shown in Figure 1 emerges. Both have to be analytically connected when µ is varied, which is de-
picted in Figure 2 (left). More specifically, leaving the critical µI-values (the bottom of the figure),
lines of second order transitions depart from the tricritical points, separating regions of first order
transitions from crossover regions. In the vicinity of the tricritical points, the line is governed by
tricritical scaling laws, which allows for an extrapolation to the chiral limit. For the Nf = 2 back-
plane, which is of interest in this study, the possible scenarios are shown in Figure 2 (right). If the
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Figure 2: Left: Expected QCD phase diagram as function of (µ/T )2. Right: Possible scenarios in the
Nf = 2 backplane. Both figures follow [1].

tricritical point at m = 0 is at negative values of µ2, the chiral phase transition is second order. On
the other hand, if it is at positive values, there exists a first order region at µ = 0 and the transition
in the chiral limit must be first order, too. In this way one can clarify the order of the chiral limit at
zero chemical potential by mapping out the second order line. Using staggered fermions on Nt = 4
lattices, it was indeed found that the transition is of first order in the chiral limit [1]. These findings
have to be contrasted with other fermion discretizations. We report on the status of our simulations
with Wilson fermions following the same approach.

2. Simulation details

We employ the same numerical setup as for the previous study described in [2]. That is, in the
gauge sector one has the standard Wilson gauge action. In the fermionic sector we consider two
flavours of mass-degenerate pure Wilson fermions. The bare fermion mass m is encapsulated in
the hopping parameter κ = (2(am+4))−1. Finite temperature on the lattice is given by the inverse
temporal extent, T = 1/(a(β )Nτ). All simulations were carried out using the OpenCL1 based
code CL2QCD [3]2, which runs efficiently on Graphic Processing Units (GPUs) on LOEWE-CSC
at Goethe-University Frankfurt [5] and on L-CSC at GSI Darmstadt [6]. We work at fixed temporal
lattice extent Nτ = 4, leaving the RW-plane µc

I = πT investigated in [2]. In the latter study, the
lowest mass simulated was at κ = 0.165. Consequently, we initialized this study at the same value
of the bare quark mass, adding κ = 0.170,0.175 and 0.180. In order to locate the critical chemical
potential for each bare quark mass, simulations at various values of the quark chemical potential
aµ were carried out. Note that it is possible to transform results obtained at one specific value
of the chemical potential to different center sectors due to the RW symmetry (1.2). For each of
these parameter sets, temperature scans were carried out with ∆β at least 0.001 around the critical
coupling on three spatial volumes, Nσ = 12,16 and 20, corresponding to aspect ratios Nσ/Nτ

1See www.khronos.org/opencl for more information.
2Which is now available at github.com/CL2QCD .
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Figure 4: Left: Preliminary fit results for κ = 0.180. Right: Results for µc
I (κ).

of 3,4 and 5, respectively. After discarding 5k to 10k trajectories for thermalization, 40k to 60k
trajectories have been simulated on each individual Monte-Carlo chain, such that there are at least
100 independent measurements around the critical region. The autocorrelation on the data was
estimated using a python implementation3 of the Wolff method [8]. To accumulate statistics faster,
we simulated four chains for each parameter set. Observables are measured after each trajectory
and the acceptance rate in each run was of the order of 75%. Additional β -points have been filled
in using Ferrenberg-Swendsen reweighting [9].

3. Results

We define a (pseudo-)critical temperature Tc or coupling βc by the vanishing of the skewness

S = 〈(X−〈X〉)3〉/〈(X−〈X〉)2〉3/2 (3.1)

of a suitable observable X . In this study, we use the chiral condensate 〈ψ̄ψ〉 = Nf TrD−1. Figure
3 (left) shows βc for κ = 0.170 as well as a fit to the data. For a fixed κ , the βc(µ) can be nicely

3See github.com/dhesse/py-uwerr .
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κ βc aµc
I

0.165 5.2421(1) 0.2408(6)
0.170 5.1497(9) 0.1981(9)
0.175 5.0519(3) 0.1346(17)
0.180 4.9520(2) 0.0090(423)

Table 1: Results for βc and aµc
I

from finite size scaling.

κ β a[fm] T [MeV] mπ [MeV]
0.1800 4.9519 0.309(3) 162(2) 587(6)
0.1750 5.0519 0.301(3) 166(2) 642(7)
0.1700 5.1500 0.288(3) 174(2) 699(7)
0.1650 5.2420 0.271(3) 185(2) 770(8)
0.1575 5.3550 0.246(3) 203(2) 929(10)

Table 2: Results of the scale setting. See text for details.

fitted to a quadratic, even function, as shown in the figure. This allows to interpolate between
simulation points and to extrapolate towards zero chemical potential. As expected, the results
show a decreasing critical temperature as the chemical potential approaches zero. The same holds
if the (bare) mass is lowered.

In the thermodynamic limit V → ∞, the Binder cumulant [10]

B4(X) = 〈(X−〈X〉)4〉/〈(X−〈X〉)2〉2 (3.2)

allows to extract the order of the transition. In particular, it takes the values 1 for a first order
transition and 3 when there is no true phase transition but a crossover. For the case of a second
order transtion in the 3D Ising universality class it has a value of around 1.604 (see e.g. [7]). Hence,
a discontinuity exists when passing from the first order to the crossover region via the second order
endpoint. To clarify the type of transition on finite lattices one can look at the finite-size scaling of
the B4 at βc. In the vicinity of the second order point it scales as [10]

B4(βc,Nσ ) = b1 +b2
[
(aµI)

2− (aµ
c
I )

2]N1/ν

σ + . . . . (3.3)

For the 3D Ising universality class, one has b1 ≈ 1.604 and ν ≈ 0.63. The critical coupling µc
I

indicates the position of the Z(2) endpoint.
The values for B4(βc,Nσ ) obtained from the simulations can be fitted to this form. Examples

are given in Figure 3 (right) and 4 (left). The results for µc
I are shown in Figure 4 (right). Results

for βc and µc
I are summarized in Table 1. As can be seen in the figures, B4 increases with volume

if the transition is a crossover (left of the second order point), whereas it decreases in the first
order region, ultimately approaching the infinite volume values 3 and 1, respectively. As the (bare)
quark mass is lowered, µc

I /T decreases towards zero (see Figure 4 (right)). Note that the results for
κ = 0.180 are preliminary. With the given data, one has to extrapolate to µc

I (see Figure 4 (left)).
Therefore we are currently adding more simulations here in order to get a better estimate of µc

I .
Nevertheless, µc

I is clearly compatible with zero within errors given the current data. This indicates
that also for µ = 0 a first order region is present.

To relate these findings to physical scales we performed a series of T = 0 simulations at or
close to the respective βc for each κ . Similar to [2] we generated O(400) independent configu-
rations on 323× 12 lattices. With these at hand, we set the scale by the w0 parameter using the
publicly available code described in [11]. This method is based on the Wilson-flow and is very effi-
cient and fast. In particular, it is much more precise than setting the scale by the ρ mass, which was
done in [2]. Hence, we revaluated the T = 0 simulations from this study, carried out at κ = 0.1575,
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Figure 5: Z(2) line in the mπ -(µ/T )2 plane. See text for details.

and include them here for completeness. In addition, the pion mass mπ was determined4. The
results for the lattice spacing a, the critical temperature Tc and mπ in physical units are summarized
in Table 2. The results show that, in terms of pion masses, the first order region is large. Note that
the lattices coarsen going to lower masses, since βc decreases. However, all lattices considered are
very coarse, a & 0.25 fm. Because of this, huge discretization artifacts can be expected. Note that
mπL > 5 holds for all our parameter sets, so that finite size effects are negligible.

4. Discussion & Perspectives

Our findings are summarized in Figure 5, which shows the Z(2) line in the mπ -µ2 plane.
Leaving the RW-plane, the critical line approaches zero µ at clearly non-vanishing pion masses. In
fact, the lowering of the critical pion masses is steady and relatively mild. This finding corresponds
to the second scenario sketched in Figure 2 (right).

For comparison, the results from the original study using staggered fermions [1] are also shown
in Figure 5. On coarse lattices, both staggered and Wilson discretizations show similar behaviour
with a first order region at µ = 0. This region is much larger for Wilson fermions. In (O(a)-
improved) Wilson studies at Nτ = 12 [12] and 16 [13], also shown in the figure, only crossover
signals are seen, yielding an upper bound for a possible first order region. This suggest that the
observed large first order region is to a large extent due to discretization effects.

To put our Nτ = 4 results into perspective, a recent study with O(a)-improved Wilson-Clover
fermions determined a similarly large mc

π of around 880 MeV for Nf = 3 on Nτ = 4 lattices[14].
This may suggest that the O(a) effects are not dominant, at least not on Nτ = 4 lattices.

To reduce cut-off effects, one has to study the Nτ -dependence of the first order region. In an-
other study presented at this conference [15], it was shown that the tricritical point in the RW-plane
moves to lower masses by roughly 100 MeV within our setup. We will determine this dependence
for the µ = 0 endpoint of the chiral critical line in future studies.

4We thank F. Depta for carrying out these measurements.
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