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We extend our study of excited-state effects on nucleon vector form factors to the case of the axial
vector and pseudoscalar form factors. Combining information from a variety of different ratios
of two- and three-point functions, we are able to extract the form factors GA and GP over a range
of momentum transfers Q2; together with the use of different methods to suppress excited-state
contaminations this allows us to systematically study the effect of excited states.
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Excited-State Effects in Nucleon Axial Form Factors G.M. von Hippel

1. Introduction

The axial and pseudoscalar form factors of nucleon defined by

〈N(p′,s′)|Aµ(0)|N(p,s)〉= us′(p′)
(

GA(Q2)γµγ5 +
qµ

2mN
GP(Q2)γ5

)
us(p) ,

where q= p′− p and Q2 =−q2, are valuable and important predictions from lattice QCD, provided
all systematics are understood.

Experimentally, GA(Q2) is accessible via pion electroproduction and elastic neutrino scatter-
ing; GA(0) = gA is measured very precisely in neutron β decay [1]. GP(Q2) is experimentally
measured in muon capture on the proton, and is only poorly known.

Previous studies of the axial charge of the nucleon [2] found that accounting for excited-state
effects was crucial in reproducing the experimental value. Our study of nucleon electromagnetic
form factors [3] found that a systematic treatment of excited-state contaminations was essential in
order to reproduce the experimental values of the nucleon charge radii. This leads to the expectation
that excited-state effects will likewise be important in studying the axial form factors of the nucleon.

2. Methods

2.1 Lattice measurements
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Figure 1: Quark-level diagrams for the nucleon two- and three-point functions.

On the CLS Nf = 2 ensembles, we measure the two- and three-point functions

C2((p, t) = ∑
x

eip·x
Γβα 〈Ψα(x, t)Ψ

β
(0)〉, C3,O(q, t, ts) = ∑

x,y
eiq·y

Γβα〈Ψα(x, ts)O(y, t)Ψ
β
(0)〉

for O ∈ {AI
µ ,P}, where we use the polarization matrix Γ = 1

2(1+ γ0)(1+ iγ5γ3) and the improved
current AI

µ = Aµ +acA∂µP. To reduce excited-state contaminations from the outset, we use Gaus-
sian smearing [4] with APE-smeared [5] links at source and sink; for the three-point functions, the
extended-propagator method [6] is used.

2.2 Ratios and decomposition

Forming the ratios

RO(q, t, ts) =
C3,O(q, t, ts)

C2(q, ts)

√
C2(q, ts− t)C2(0, t)C2(0, ts)
C2(0, ts− t)C2(q, t)C2(q, ts)
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for O ∈ {AI
µ ,P}, the form factors can be extracted via their asymptotic behaviour (ts� t� 0),

RAI
0
(q, t, ts)→

q3√
2Eq(mN +Eq)

(
GA(q2)+

mN−Eq

2mN
GP(q2)

)
,

RAI
k
(q, t, ts)→

i√
2Eq(mN +Eq)

(
(mN +Eq)δk3GA(q2)− q3qk

2mN
GP(q2)

)
,

RP(q, t, ts)→
q3√

2Eq(mN +Eq)

(
mN

mPCAC
GA(q2)+

q2

4mNmPCAC
GP(q2)

)
.

This decomposition suggests two possible strategies to extract GA, GP:

1. Strategy I:

(a) Extract asymptotic behaviour of RO(q, t, ts)→ R∞

O(q),

(b) Solve the (generally overdetermined) linear system

R∞ = MG , (2.1)

where R∞ = (RAI
1
(q),RAI

2
(−q), . . .)t contains both different operators O and differ-

ent momenta q giving the same q2, M contains the kinematical prefactors, and G =

(GA(q2),GP(q2))t .

This method has the advantage that the ratios have a well-known asymptotic behaviour, and
that we only need to assume ground-state dominance in the asymptotic regime. The disad-
vantage is that there is no visual guidance for the goodness of the fit.

2. Strategy II:

(a) Define effective form factors Geff
X (q2, t, ts) by solving the (generally overdetermined)

linear system
R = MGeff (2.2)

at each t, ts,

(b) Extract asymptotic behaviour of Geff
X (q2, t, ts)→ GX(q2).

The advantage of this method is that we have some visual guidance for the goodness of
the fit to Geff

X , while the disadvantage is that the form factor decomposition is motivated by
ground-state saturation, which will not be a good assumption at short time separations.

2.3 Asymptotic behaviour

With each of the two strategies, we use two different methods to extract the asymptotic be-
haviour:

1. The summation method [7], where we use a linear fit in ts to extract R∞(q) from the slope of

S(q, ts)≡
ts−1

∑
t=1

R(q, t, ts) =C+
(
R∞(q)+O(e−∆ts)

)
ts .

3
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While this method has the advantage of not relying on specific assumptions about the excited-
state contaminations (the excited-state effects in the summed ratio are suppressed because
∆ts > ∆t by construction), it suffers from increased statistical noise. Moreover, any residual
excited-state contamination may be hard to discern.

2. Explicit two-state fits of the form

R(q, t, ts) = R∞(q)+C1e−∆t +C2e−∆′(ts−t) ,

where for our kinematics ∆ = mπ , ∆′ = 2mπ (except for q = 0, where ∆ = ∆′ = 2mπ ). Under
the assumption that the leading time dependence has been correctly identified, this method
may work even for relatively short t, ts. Its disadvantages are the model dependence inherent
in the assumption that a single excited state dominates, and the need to either fix the gaps ∆,
∆′ by hand, or else to perform a less stable non-linear fit.

2.4 Momentum dependence

From the PCAC and Goldberger-Treiman relations, we may parameterize the momentum de-
pendence of GP under the assumption of pion-pole dominance as [8]

GP(Q2) = GA(Q2)
4m2

N

Q2 +m2
π

. (2.3)

We parameterize GA as a dipole,

GA(Q2) =
gA(

1+Q2/M2
A

)2 , (2.4)

and perform a joint fit to both form factors. A Chiral Perturbation Theory-inspired parameterization
and a parameterization based on the z-expansion [9] are under consideration.

3. Preliminary results

Here, we present preliminary results for the N6 (a≈ 0.05 fm, mπ ≈ 332 MeV) ensemble as a
representative case with comparably high statistics. We found that the signal in the A0 channel was
too noisy to be useful, and hence have omitted that channel from our analysis.

In figure 2, we compare the results obtained when using the remaining (P, Ak) channels with
those obtained using only the Ak channels. We find that for the axial form factor GA, neither the
selection of the channels, nor the extraction strategy and excited-state suppression method used
affect the result in any significant way. For the induced pseudoscalar form factor GP, on the other
hand, we find drastically different effective form factors Geff

P (Q2, t, ts) in strategy II, depending
on whether we include or exclude the pseudoscalar operator P in our basis of channels; under
strategy I, this is mirrored in significantly different results obtained in the summation method when
including or excluding P. Explicit two-state fits in strategy I give a result which is much more
stable against inclusion or exclusion of the P operator, and which also agrees much better with the
fairly stable plateaux seen in strategy II when including P. On the other hand, including P leads
to extremely bad χ2 values in the least-squares solution of eq. (2.2), which appears to be driven

4
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mostly by the very high statistical precision of the ratios RP, and which decrease rapidly as the time
separations t, ts increase, indicating that a lack of ground-state dominance is the cause of the large
χ2 values observed.

In figure 3, we compare the momentum dependence of the form factors as obtained using
strategy I with either of our excited-state suppression techniques and either including or excluding
P among our basis of operators. We find that for the two-state fits, the inclusion or exclusion of
P does not affect the results for either form factor in any significant way, whereas in the case of
the summation method, results for the induced pseudoscalar form factor GP changes by several
standard deviation depending on whether P is included or excluded. The summation method result
including P agrees well with the results from the two-state fits and yields a better description of GA

from the combined fit (2.3-2.4), but gives much poorer χ2 values for the least-squares solution of
eq. (2.1), than the corresponding result excluding P.

Our results indicate that an efficient suppression of excited-state effects is crucial also for the
determination of axial form factors. In particular for the induced pseudoscalar form factor GP,
excited-state effects dominate the uncertainty of the lattice determination. The precise manner
in which the axial form factors are extracted affects the amount of excited-state contamination:
excited-state contributions differ significantly between different channels, making a prudent choice
of operator basis crucial. Explicit two-state fits appear to be better able to extract consistent results
accross channels than the summation method; this is contrary to what was found for the case of the
vector form factors [3].

More details are to be contained in a forthcoming publication [10].
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Figure 2: A comparison of the different strategies and excited-state suppression methods for GA (top row)
and GP (middle row), together with the χ2 values (bottom row) of the least-squares solution of (2.2). Results
including P are shown in the left column, and results excluding P in the right; in the upper two rows, the
horizontal lines indicate the results obtained using strategy I, whereas the data points show the effective form
factors of strategy II; note the different scales on the ordinate axes in the last row. All results are preliminary.
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Figure 3: A comparison of results for GA (top row) and GP (middle row), together with the χ2 value
(bottom row) of the least-squares solution of (2.1), as obtained using strategy I with different excited-state
suppression methods when including (blue) or excluding (yellow) the pseudoscalar P among the basis of
operators. Results from the summation method are shown in the left column, whereas results using explicit
two-state fits are shown in the right column. All results are preliminary.
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