
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
1
3

A derivative-based approach for the leading order
hadronic contribution to gµ −2

Eric B. Gregory∗

Bergische Universität Wuppertal, 42097 Wuppertal, Germany
Jülich Supercomputing Centre, 52428 Jülich, Germany
E-mail: gregory@uni-wuppertal.de

Craig McNeile
Plymouth University, PL4 8AA Plymouth, United Kingdom
E-mail: craig.mcneile@plymouth.ac.uk

We describe a lattice approach to calculating the leading-order hadronic contribution to the

anomalous magnetic moment of the muon. We employ lattice momentum derivatives, in both

the spatial and temporal directions, to determine the hadronic vacuum polarization scalar at low

momenta and construct a smooth, intregrable function in this momentum region. The method is

tested on one hex-smeared Wilson-quark lattice ensemble with physical pion masses

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
1
3

A derivative-based approach to gµ −2 Eric B. Gregory

1. Introduction

The calculation of the anomalous magnetic moment of the muonaµ =
(gµ−2)

2 is an important
challenge, because a precise theoretical calculation fromthe standard model of particle physics,
which differs from the experimental value, would be an indication of physics beyond the Standard
Model. Indeed there is a current tension between the experimental estimate foraµ , and the value
predicted by the standard model. The hadronic contributionto aµ is the dominant source of uncer-
tainty. There are new experiments at FNAL [1] and J-PARC which plan to reduce the experimental
error onaµ , thus motivating reducing the errors on the theoretical calculation.

In this work we report on the determination of the hadronic vacuum polarization (HVP) contri-
bution toaµ , using a derivative based method. The lattice determination of aHVP,LO

µ was pioneered
by Blum [2]. Izubuchi [3] has reviewed recent developments in calculatingaHVP,LO

µ using lattice
QCD.

The strategy used in this, and most previous lattice QCD calculations, is as follows. First
vector current correlators are used to calculate the hadronic vacuum polarization (HVP) tensor in
momentum space:

Πµν(q̂) =∑
x

eiq(∆x+ aµ̂
2 )〈JCVC

µ (x0)J
loc
ν (x)〉. (1.1)

HereJloc
ν is the local vector current andJCVC

µ is the lattice conserved vector current which satisfies
the Ward identity for the modifies momentum ˆqµ = 2

a sin
(aqµ

2

)

. From this one determines a HVP
scalar

Π(s)≡ Πµν(q̂)/Tµν(q̂), (1.2)

with the momentum tensorTµν(q̂)≡
(

q̂µ q̂ν − q̂2δµν
)

, ands= q2

The lowest-order contribution toahad
µ is given by

ahad,LO
µ =

α
π

∫ ∞

0
ds f(s)Πp(s), (1.3)

using the kernel function

f (s) =
m2

µsZ(s)3(1−sZ(s))

1+m2
µsZ(s)2 , where Z =−

s−
√

s2+4m2
µs

2m2
µs

. (1.4)

In general only values ofΠ(s) are known at discrete lattice momenta, so some procedure is
needed to determine a smooth functionΠ(s). In the past some groups have relied upon fitting a
function, such as a vector meson dominance model, to the lattice values ofΠ(s). This model-
dependence introduces potentially significant systematiceffects [4]. A further challenge is that one
cannot directly access the zero-momentum value ofΠ(s) through equation 1.2. This makes it harder
to constrain the low-momentum values which contribute the most to the integral in equation 1.3.

We propose a moments-based method that addresses each of these concerns. We determine
spatial and temporal momentum derivatives ofTµν(q̂). To estimate the spatial derivatives requires
additional correlators to be measured. From these momentumderivatives we can calculate that
corresponding derivatives of the HVP scalarΠ(s). We use Taylor expansions to interpolateΠ(s)
to non-lattice values ofs. Our method produces a model-independent smooth curve forΠ(s) and
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allows direct access to the zero-momentum value ofΠ(s). This produces a high-precision deter-
mination ofΠ(s) in the crucial low-momentum region of the integrand of (1.3). De Rafael [5] has
shown thatahad,LO

µ can be reconstructed from up to three derivatives ofΠp(s).

2. Outline of the method

We begin by determining the HVP vector and the its firstN derivatives with respect to momenta
qαi for i = 1, ..,N:

Πµν(q̂) = ∑
x

eiq(∆x+ aµ̂
2 )〈JCVC

µ (x0)J
loc
ν (x)〉 (2.1)

∂ nΠµν(q̂)

∂qα1 · · ·∂qαn

= in∑
x

[

n

∏
ρ
(∆xαρ +

δµαρ

2
)

]

eiQ(∆x+ aµ̂
2 )〈JCVC

µ (x0)J
loc
ν (x)〉. (2.2)

We generally determineN = 8 derivatives ofΠµν using both spatial and temporal moments,
which we will see gives three derivatives ofΠ(s). Other groups, e.g. [6], have used temporal
moments. However apart from the proposal in [7], no other groups, to our knowledge, have taken
advantage of the spatial moments.

First we transform derivatives ofΠµν with respect to q, to derivatives with respect to ˆq. This
is straightforward with the chain rule. To determine derivatives ofΠ(s) we again apply the chain
rule. Linear expressions relate derivatives ofΠ(s) andΠµν(q):

∂ nΠµν

∂qα1 · · ·∂qαn

(q) =
n

∑
m=0

A{α}
µν

n

m(q)
dmΠ(s)

dsm
. (2.3)

The superscript{α} is shorthand for the set of indicesα1 · · ·αn. We will occasionally suppress the
{α} for readability. Recursion expressions relate theAn

m to Aµν
0
0(q) = Tµν(q). The m= 0 terms

are derivatives ofTµν(q):

A{α}
µν

n

0(q) = ∂αn · · ·∂α1Aµν
0
0(q)

= ∂αn · · ·∂α1Tµν(q). (2.4)

Note thatTµν(q) has only three non-zero derivatives:

A{α}
µν

n

0(q) =



























Tµν(q) = qµqnu−q2δµν for n= 0
∂Tµν
∂qα1

= δµα1qν +δνα1qµ −2δµνqα1 for n= 1
∂ 2Tµν

∂qα1∂qα2
= δµα1δνα2 +δµα2δνα1 +2δµνδα1α2 for n= 2

∂ nTµν
∂qα1 ···∂qαn

= 0 for n< 2

(2.5)

One finds also that the whenm= n

A{α}
µν

n

n(q) =

{

2qαnA
{α}
µν

n−1

n−1 for n< 3

0 for n≥ 3,
(2.6)

and, in general

A{α}
µν

n

m = 2qαnA
{α}
µν

n−1

m−1+∂qαn
A{α}

µν
n−1

m . (2.7)
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The expressions forA{α}
µν

n

m tend to have a large number of terms. We have a script that generates
algebraic and C code expressions for these.

For non-zero momentum we can now compute∂ nΠµν (q̂)
∂qα1 ···∂qαn

by solving the linear system (2.3).

For s= 0 we must be slightly more savvy. The factors ofq in A{α}
µν

n

m cause unwanted di-

vergences. CoefficientsA{α}
µν

n

m(q) have(2− n)+ 2m powers of momentum. So for any value of
m, needed to find themth derivative ofΠ(s), n = 2+ 2m gives a constant coefficient with noq-
dependence. Then we can solve

dmΠ
dsm

∣

∣

∣

s=0
=

1

A{α}
µν

(2+2m)

m

∂ (2+2m)Πµν

∂ q̂α1 · · ·∂ q̂α2+2m

∣

∣

∣

q̂=0
. (2.8)

We concern ourselves with the first three derivatives ofΠ(s). So ats= 0 the relevant coefficients
areAµν

2
0, Aµν

4
2, Aµν

6
1, andAµν

8
3. What remains if to find the cases where theAn

m are constant for
n= m+2. For these cases the constants are combinations of Kronecker deltas. To make the most
of our data we attempt to classify these contributing index combinations. Forn= 2, m= 0 we have
two cases

A{α}
µν

2

0 = (δα1µδα2ν −2δµνδα1α2ν) =

{

−2 for µ = ν , α1 = α2, α1 6= µ
1 for µ = α1, ν = α2, µ 6= ν

(2.9)

In Tab. 1 we summarize theA2
0. We label the label diagonal inµ andν as the “A20d0” channel.

There areNcomb= 12 index combinations that contribute. If we explore all thepossible index values
for the off-diagonalµ 6= ν case, which we label “A20od0”, there areNcomb= 24 contributions.
Howeverα1 andα2 are interchangeable, so the number of independent second derivatives ofΠµν

that contribute is smaller. We use a local source at the sink and a conserved vector current (CVC)
source at the sink, soµ andν are distinguishable. We therefore haveNcl = 12 combinations for
“A20od0”. Had we used CVC at both ends we would have onlyNcc = 6 combinations. We see

that in total for our local-CVC setup, we have 24 independentmeasurements of∂
2Πµν (0)

∂q̂α1
∂q̂α2

which

contribute to our estimate ofΠ(s= 0). The contributing index channels forA2
0 are summarized

graphically in Fig. 1. We classify the contributing channels for A4
1, A6

2, andA8
3 in Figs. 2, 3 and

4, respectively. The numbers of contributing independent index configurations for each channel of
A2

0, A4
1, A6

2, andA8
3 are summarized in Tab. 1

A20d0 A20od0

Figure 1: Graphical depiction of contributingA2
0 index combinations. Circles represent theµ andν indices,

crosses representα indices. Colored bars indicate the connected indices have the same value.

2.1 Smooth curve generation

Fors between two lattice momentasi < s< si+1, we make “lower” and “upper” estimates,

Πlow(s) = ∑
n
(s−si)

n 1
n!

dnΠ
dsn

∣

∣

∣

si

and Πup(s) = ∑
n
(s−si+1)

n 1
n!

dnΠ
dsn

∣

∣

∣

si+1

(2.10)
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A2
0 label Ncomb Ncl Ncc

-2 A20d0 12 12 12
1 A20od0 24 12 6

total 36 24 18

A6
2 label Ncomb Ncl Ncc

-360 A62d0 12 12 12
-72 A62d1 360 24 24
-48 A62d2 180 12 12
-24 A62d3 180 12 12
-24 A62d3a 360 4 4
-16 A62d4 1080 12 12
+4 A62od0 2160 12 6

+12 A62od1 3600 48 24
+36 A62od2 240 12 6
+60 A62od3 144 24 12

total 8316 172 124

A4
1 label Ncomb Ncl Ncc

-24 A41d0 12 12 12
-8 A41d1 72 12 12
-4 A41d2 72 12 12
+2 A41od0 288 24 12
+6 A41od1 96 24 12

total 540 84 60

A6
2 label Ncomb Ncl Ncc

-6720 A83d0 12 12 12
-960 A83d1 672 24 24
-720 A83d2 336 12 12
-576 A83d3 840 12 12
-288 A83d4 840 12 12
-240 A83d5 336 12 12
-192 A83d6 5040 12 12
-144 A83d7 10080 12 12
-96 A83d8 5040 12 12
-48 A83d9 10080 4 4
+24 A83od0 60480 24 12
+72 A83od1 26880 48 24

+120 A83od2 9408 48 24
+360 A83od3 1344 24 12
+840 A83od4 192 24 12

total 131580 292 208

Table 1: Combinations contributing to non-zeroA2
0, A2

0, A2
0 andA2

0.

A41d0 A41d1 A41d2 A41od0 A41od1

Figure 2: Graphical depiction of contributingA4
1 index combinations.

A62d0 A62d1 A62d2 A62d3 A62d3a

A62d4 A62od0 A62od1 A62od2 A62od3

Figure 3: Graphical depiction of contributingA6
2 index combinations.

We combine these in a weighted average to get a smooth function Πsm for the integrand of (1.3).

Πsm
p (s) =

Πlow(s)wlow(s)+Πup(s)wup(s)
wlow(s)+wup(s)

(2.11)

with

wlow(s) =
1

∣

∣

∣

∣

(s−si)σ
(

dΠ
ds

∣

∣

∣

si

)∣

∣

∣

∣

p and wup(s) =
1

∣

∣

∣

∣

(s−si+1)σ
(

dΠ
ds

∣

∣

∣

si+1

)∣

∣

∣

∣

p . (2.12)
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A83d0 A83d1 A83d2 A83d3 A83d4

A83d5 A83d6 A83d7 A83d8 A83d9

A83od0 A83od1 A83od2 A83od3 A83od4

Figure 4: Graphical depiction of contributingA8
3 index combinations.

σ
(

dΠ
ds

)

is a proxy for the uncertainty inΠlow/up andp is an adjustable parameter.

3. Numerical tests

We have tested this method on several of theNf = 2+1 flavor 2-HEX ensembles from BMW-
c [8]. For this work we concentrate on the ensemble listed in Tab. 2, which has the advantage of
having 1060 configurations andLs = Lt . We show in Fig. 5 that the different channels for each
An

m yield consistent estimates ofdmΠ
dsm . In Fig. 6 we test different methods of computing a smooth

function ofΠ, including different values ofp. We note as a curiosity, the large error that would be
induced by neglecting thes= 0 point, and how well one might do usingonly thes= 0 point. Fig. 7
demonstrates thatn= 3 is a sufficient expansion order for determining a smooth function Π.

ambare
ud ambare

s volume # cfgs Mπ (GeV)
β = 3.5, a−1 = 2.131 GeV

-0.05294 -0.0060 643×64 1060 0.130(2)
Table 2: Configuration parameters.
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light average
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0
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d2 Π
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0

light channels
light average
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-0.1
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strange channels
strange average

-40

-20

0

20

40
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100

d3 Π
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light channels
light average

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
channels

0.25

0.255

0.26

0.265
strange channels
strange average

Figure 5: Test of consistency of estimates ofdmΠ
dsm from different channels.

0 0.05 0.1

s (GeV
2
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0

0.005

0.01

0.015

Π
(s

)-Π
(0

)
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no s=0 data

Figure 6: SmoothΠ(s) curves generated with different values ofp.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
1
3

A derivative-based approach to gµ −2 Eric B. Gregory

0

5e-07

1e-06

1.5e-06

2e-06

2.5e-06

n
max

=3 p=2
n

max
=2 p=2

n
max

=1 p=2
n

max
=0 p=1

0 0.01 0.02 0.03 0.04

s (GeV
2
)

0

5e-07

1e-06

6e-08

7e-08

8e-08

9e-08

1e-07

a µha
d

N
f
=2+1

strange only

0 1 2 3 4
n

max

3.8e-08

3.9e-08

4e-08

4.1e-08

a µst
ra

ng
e

Figure 7: The dependence on the maximum expansion ordern of the integrand (l) andaHVP (r).

4. Conclusions

The method described above uses many estimates of the spatial and temporal moments to
make a precise determine ofΠ(s) and its derivatives at both finite and zero momentum. Additional
systematic errors need to be studied such as finite volume effects [9].

Including spatial as well as temporal moments greatly increases the number of estimates of
Π and its derivatives ats= 0 one can obtain from each source on each configuration. Thes= 0
point is the most important in the determination ofaHVP, because it is so much closer to the peak
of the integrand in equation 1.3, than the first finites lattice momentum available for current lattice

volumes. The most important lattice measurement one can make for determiningaHVP,LO
µ is dΠ

ds

∣

∣

∣

s=0
,

becauseΠ(0) is subtracted off. Our method produces 172 estimates ofdΠ
ds

∣

∣

∣

s=0
for each source.
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