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1. Introduction

The calculation of the anomalous magnetic moment of the rm,;oﬁ 92) i an important
challenge, because a precise theoretical calculation thenstandard model of particle physics,
which differs from the experimental value, would be an iadiien of physics beyond the Standard
Model. Indeed there is a current tension between the expatathestimate foa,, and the value
predicted by the standard model. The hadronic contribubay, is the dominant source of uncer-
tainty. There are new experiments at FNAL [1] and J-PARC Wwipian to reduce the experimental
error onay, thus motivating reducing the errors on the theoreticatudation.

In this work we report on the determination of the hadronicuan polarization (HVP) contri-

bution toa,, using a derivative based method. The lattice determinatia); " - was pioneered
by Blum [2]. Izubuchi [3] has reviewed recent developmentsalculatingay, allvhLo using lattice
QCD.

The strategy used in this, and most previous lattice QCDutations, is as follows. First
vector current correlators are used to calculate the hadvacuum polarization (HVP) tensor in
momentum space: )

Mu(@) = 5 10 (IEVC (%) IP%(X)). (1.2)
X

HereJ\ is the local vector current aan}VC is the lattice conserved vector current which satisfies
the Ward identity for the modifies momentup = 2sin(%%). From this one determines a HVP
scalar

M(s) =Ny (§)/Tuv(4), (1.2)

with the momentum tensdf,, (4) = (4.6, — G*3,v ), ands= g?
The lowest-order contribution &% is given by

alado _ / ds f(8)Mp(9) (1.3)

using the kernel function

a1 S— /S +4ms
o= m2sZ(s)* (1 SZ9)  where Z:_L, (1.4)
1+ npsZ(s)? 2mgs

In general only values dfl(s) are known at discrete lattice momenta, so some procedure is
needed to determine a smooth functidgs). In the past some groups have relied upon fitting a
function, such as a vector meson dominance model, to theelathlues off1(s). This model-
dependence introduces potentially significant systenedfiicts [4]. A further challenge is that one
cannot directly access the zero-momentum valué(sf through equation 1.2. This makes it harder
to constrain the low-momentum values which contribute tlostrio the integral in equation 1.3.

We propose a moments-based method that addresses eackettimeerns. We determine
spatial and temporal momentum derivativesTf(q). To estimate the spatial derivatives requires
additional correlators to be measured. From these momedarivatives we can calculate that
corresponding derivatives of the HVP scaldfs). We use Taylor expansions to interpol&iés)
to non-lattice values of. Our method produces a model-independent smooth curva (®rand
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allows direct access to the zero-momentum valuBl (). This produces a high-precision deter-
mination ofl1(s) in the crucial low-momentum region of the integrand of (13 Rafael [5] has

shown thaaZadLo can be reconstructed from up to three derivativeS gffs).

2. Outline of the method

We begin by determining the HVP vector and the its fitsterivatives with respect to momenta
Qg fori=1,..,N:

M (@) = 3 985 (38VC ()3 (x)) (2.1)
0", (6)

da g 2 U (IVC(0) (). (22)
ay On X

n
[0}
[](8%a, + ”p
P
P

We generally determinBl = 8 derivatives off1,, using both spatial and temporal moments,
which we will see gives three derivatives Bf(s). Other groups, e.g. [6], have used temporal
moments. However apart from the proposal in [7], no otheugspto our knowledge, have taken
advantage of the spatial moments.

First we transform derivatives &1, with respect to g, to derivatives with respecitoThis
is straightforward with the chain rule. To determine detixes of I(s) we again apply the chain
rule. Linear expressions relate derivative$igs) andl,, (q):

T g = 5 Afg (@ T,

_— 2.3
5%1 . aqan N UV m dgn ( )

The superscripfa } is shorthand for the set of indices - - - an. We will occasionally suppress the
{a} for readability. Recursion expressions relate Afjeto Auvg(q) = Tuv(q). Them=0 terms
are derivatives of,,(Q):

Al (@) = Bay -+ O A ()
== (90(” e aalTuv(q) (24)

Note thatT,, (q) has only three non-zero derivatives:

}w(Q) = Oy Ol — G°dyy forn=0
Tuv
n dqy = Oua, Qv + Sva, du — 204y oy forn=1
A @ =1 o, (2.5)
0%le, 0%, = Oua; Ova, + OpayOvay + 204y Oayap, fOr N=2
il
o3G0, — 0 forn< 2
One finds also that the when=n
Al gy 2qo,nAi,‘i',}n ,forn<3 -
avnl0) = 0 forn>3 (2.6)
and, in general
’ Alal” {a}n-1 {a}n-1
ALY m = 2000 Ay’ 1 Oaa, Ay - (2.7)
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n
The expressions foﬁfﬁ',}m tend to have a large number of terms. We have a script thatafese
algebraic and C code expressions for these.
For non-zero momentum we can now compﬁm by solving the linear system (2.3)
al“‘aCIan y g y ! !

For s =0 we must be slightly more savvy. The factorscin Ai,‘f,}nm cause unwanted di-

vergences. Coeﬁicientsi,‘f,}nm(q) have (2 — n) 4+ 2m powers of momentum. So for any value of
m, needed to find then™ derivative ofl(s), n = 2+ 2m gives a constant coefficient with rop
dependence. Then we can solve

dmn B 1 a(2+2m>r|uv 2.8)
dgn s=0 AE‘X)} (2+2m) aqal e (961a2+2m q:O' '
m

We concern ourselves with the first three derivativeBl($). So ats = 0 the relevant coefficients
areAg, Aws, AwS, andA,, 8. What remains if to find the cases where fgare constant for
n=m+ 2. For these cases the constants are combinations of Krendekas. To make the most
of our data we attempt to classify these contributing indexlginations. Fon=2, m= 0 we have
two cases

—2foru=v,a1=0, 01 # U

lforu=oay,v=0al#V (2.9)

alay? _ — {
uv o — (5a1u5a2v 25uv5a1a2v) -
In Tab. 1 we summarize th@%. We label the label diagonal ig andv as the “A20d0” channel.
There arédN;omp= 12 index combinations that contribute. If we explore allplossible index values
for the off-diagonalu # v case, which we label “A200d0”, there akgomp = 24 contributions.
Howevera; anda, are interchangeable, so the number of independent secowdties ofl,,
that contribute is smaller. We use a local source at the sidkaaconserved vector current (CVC)
source at the sink, sp andv are distinguishable. We therefore haNg = 12 combinations for
“A200d0”. Had we used CVC at both ends we would have dwly= 6 combinations. We see
that in total for our local-CVC setup, we have 24 independasasurements o%f”“% which

Yaq “day
contribute to our estimate ¢l(s= 0). The contributing index channels fég are summarized

graphically in Fig. 1. We classify the contributing charmtdr A}, AS, andA8 in Figs. 2, 3 and
4, respectively. The numbers of contributing independedéx configurations for each channel of
AZ, A1, AS, andA§ are summarized in Tab. 1

A20d0 A200d0

N

Figurel: Graphical depiction of contributing? index combinations. Circles represent thandv indices,
crosses represeatindices. Colored bars indicate the connected indices ta/eadme value.

2.1 Smooth curve generation
Fors between two lattice momenga< s < 5.1, we make “lower” and “upper” estimates,
1d™n 1d"n
N =S (s—s)" = and N9 =Y (s—5:1)" >
() Z( S) n! d9' s (s Z( Si+1) n d Is;

n n

(2.10)
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At label  Neomp Ng  Nec
24 A41do 12 12 12
A(Z) label Neomp N Nec -8 A41d1l 72 12 12
2 A20d0 12 12 12 -4 A41d2 72 12 12
1 A200d0 o4 12 6 +2  A4lod0 288 24 12
ol % 24 18 +6  Adlodl 9% 24 12
total 540 84 60

AS label  Neomb Ng  Nec
-6720  A83d0 12 12 12
960  A83dl 672 24 24
A label  Neomb Nei  Nec 720 A83d2 336 12 12
-360  A62d0 12 12 12 -576  A83d3 840 12 12
-72 A62d1 360 24 24 -288  A83d4 840 12 12
-48  A62d2 180 12 12 240  A83d5 33 12 12
24 A62d3 180 12 12 -192  A83d6 5040 12 12
-24  A62d3a 360 4 4 -144  A83d7 10080 12 12
-16 A62d4 1080 12 12 -96 A83d8 5040 12 12
+4  A620d0 2160 12 6 -48 A83d9 10080 4 4
+12  A620dl 3600 48 24 +24 A830d0 60480 24 12
+36  A620d2 240 12 6 +72 A830dl 26880 48 24
+60 A620d3 144 24 12 +120 A830d2 9408 48 24
total 8316 172 124 +360 A830d3 1344 24 12
+840 A830d4 192 24 12

total 131580 292 208
Table 1: Combinations contributing to non-zefg, A3, AZ andA3.

A41d0 A41dl A4ld2 A410d0 Adlodl

A A

Figure2: Graphical depiction of contributin@;‘l1 index combinations.

A62d0 A62d1 A62d2 A62d3 A62d3a

| .

A62d4 A620d0 A620d1 A620d2 A620d3

Figure 3: Graphical depiction of contributingg index combinations.

We combine these in a weighted average to get a smooth farfd#8 for the integrand of (1.3).

_ 'O ()W () + MUP(S)WHP(s)

Mp(s) WOV () + WoP(s)

(2.11)
with

wov(s) = ! 5 and w'(s) = ! 5. (2.12)
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Figure4: Graphical depiction of contributingg index combinations.
o (47) is a proxy for the uncertainty ifi'®"/%? andp is an adjustable parameter.

3. Numerical tests

We have tested this method on several ofithe= 2+ 1 flavor 2-HEX ensembles from BMW-
c [8]. For this work we concentrate on the ensemble listedaib. 2, which has the advantage of
having 1060 configurations arld = L;. We show in Fig. 5 that the different channels for each
A}, yield consistent estimates %ﬂ%. In Fig. 6 we test different methods of computing a smooth
function of1, including different values op. We note as a curiosity, the large error that would be
induced by neglecting the= 0 point, and how well one might do usigly thes= 0 point. Fig. 7
demonstrates that= 3 is a sufficient expansion order for determining a smootletion I1.

anfare angare volume #cfgs My (GeV)
B=35a1=2131GeV
-0.05294 -0.0060 4x 64 1060 0.130(2)

Table 2: Configuration parameters.

°
2
T

n(s)10)

0.005~

Figure 6: Smoothll(s) curves generated with different valuesmf
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Figure7: The dependence on the maximum expansion anadithe integrand (I) andyyp (r).

4. Conclusions

The method described above uses many estimates of thel spatidemporal moments to
make a precise determine [d{s) and its derivatives at both finite and zero momentum. Addtio
systematic errors need to be studied such as finite voluraetgffo].

Including spatial as well as temporal moments greatly imeee the number of estimates of
M and its derivatives a = 0 one can obtain from each source on each configuration.sEh@é
point is the most important in the determinationapf,p, because it is so much closer to the peak
of the integrand in equation 1.3, than the first fiitattice momentum available for current lattice

volumes. The mostimportant lattice measurement one cae foakletermining; < is 971

=0’
becausd1(0) is subtracted off. Our method produces 172 estlmat(?c%#f for each source.
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