
P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

 Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

Early Performance Evaluation of Lattice QCD on
POWER+GPU Cluster

Jun Doi1

IBM Research – Tokyo

19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo, Japan

E-mail: doichan@jp.ibm.com

As supercomputers are shifting from peta-scale to exa-scale, computers with accelerators such

as GPUs, MICs and FPGAs have become one of the big trends of supercomputer because of

their low energy consumption and high density. Now IBM’s POWER processor has quite new

power, Nvidia’s Tesla GPU brings huge computational capability. It is important for us to

understand how this new POWER+GPU environment brings power to the actual applications in

the early stage. We implemented Wilson-Dirac operator and BiCGStab solver using CUDA7.0

on the POWER+GPU cluster and evaluated the performance.

The 33rd International Symposium on Lattice Field Theory

14 -18 July 2015

Kobe International Conference Center, Kobe, Japan

1

 Speaker

http://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

Early Performance Evaluation of Lattice QCD on POWER+GPU Cluster Jun Doi

2

1. Introduction

The IBM POWER8 processor is the first POWER processor that has Nvidia’s Tesla GPU

for the scientific simulations. In the OpenPOWER foundation [1], POWER processor and Tesla

GPU will make new generation of supercomputing and 2 large scale supercomputers SUMMIT

and SIERRA will be built with POWER processor and Tesla GPU in 2017. It is important to

study performance of POWER+GPU system in the early stage and we select lattice QCD as one

of the important application.

In this report we develop and measure lattice QCD program on IBM Power System S842L

cluster. This system has 2 POWER8 processors per node and each POWER8 processor has 12

processors cores running at 3.02 GHz. Each processor core can exploit 8 hardware threads, thus

we can run 96 threads per POWER8 processor. POWER8 processor core has 2 SIMD floating

point units which calculates 2 FMA operations per cycle for double precision, and 4 FMAs for

single precision. So the peak performance of the POWER8 processor which is installed on IBM

Power System S842L is 289.92 GFlops for double precision and 579.84 GFlops for single

precision. Table 1 shows specifications of our cluster used in this report.

Nvidia’s Tesla GPUs can be attached to each socket via PCI express, and our cluster has

Tesla K40 GPU per socket, so we have 2 Tesla K40 per node. Since 2 GPUs are attached to

different socket we cannot offer peer-to-peer copy functions between 2 GPUs. POWER8 can

handle both big and little endian, and for GPU attached model POWER8 runs under little endian

mode without any overhead.

Table 1 POWER System used in this report

Model IBM POWER System S824L

Processor POWER8

Number of CPU cores 12 cores

Number of CPUs 2 sockets

Clock frequency 3.02 GHz

Hardware threads (SMT) 12 threads per core

Performance per socket 289.92 GFlops(double)/579.84 GFlops(Single)

Memory 512 GB per node

Memory bandwidth 192 GB/s

GPU NVIDIA Tesla K40 per socket

Ubuntu Linux is running on each node of POWER8 cluster which supports little endian on

POWER processor. The environment for development is as same as common x86 Linux cluster

and most of applications can be executed with recompilation. Currently we can use IBM XL

C/C++ Compiler and XL Fortran Compiler and third party compilers such as GNU compilers.

Nvidia’s CUDA toolkit started to support POWER Systems from version 7.0.

2. Optimization of lattice QCD on POWER+GPU System

2.1 Performance consideration of Wilson-Dirac operator

In this report, we optimized Wilson-Dirac operator which is commonly used in lattice

QCD simulations. The Wilson-Dirac operator D is defined by

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

Early Performance Evaluation of Lattice QCD on POWER+GPU Cluster Jun Doi

3

            



4

1

ˆ)ˆ(1ˆ)(1


  nnUnnUnnD t

, (1)

where  n is a spinor containing four spins with three colors each defined by complex

numbers,
)(nU is a gauge matrix containing 3 × 3 complex number elements, and  is a

gamma matrix containing 4 × 4 matrix elements, defined in Equation 2. The  is 1, 2, 3, or 4

corresponding to the X-, Y-, Z-, or T-dimensions, and  indicates which of the eight neighbors

it refers to.



























000

000

000

000

1

i

i

i

i





























0001

0010

0100

1000

2



























000

000

000

000

3

i

i

i

i




























1000

0100

0010

0001

4

 (2)

In Equation 1, we multiply the 3 × 3 matrix and four spins with three colors for eight

neighboring lattice sites and reduce them by multiplying  to the spins of the focused lattice

site. Actually, we can halve the matrix multiplications by using symmetry in the gamma

matrices. Equation 3 shows an example for the X+ direction (1), where we can see two

pairs of the same matrix and spin multiplications (h1, h2):

   

   
   
   
   

 
 
 
  




























































11

21

21

11

411

321

321

411

11 ,1̂)(1

hnUi

hnUi

hnU

hnU

sisnUi

sisnUi

sisnU

sisnU

mnnU 

 (3)

This technique is also used for data compression to exchange boundaries between

neighboring processes. We refer to the two compressed spins as a half-spinor.

The Wilson-Dirac operator for each direction is calculated in the following three steps:

(1) Half-spinor construction: 12 flops

(2) Multiplication of gauge matrix and half-spinor: 132 flops

(3) Spinor reduction: 48 flops (24 flops for T-dimension)

The flop counts of the Wilson-Dirac kernel per lattice site are calculated as 1,488 by

adding the flop counts for all three of these steps. While calculating 1,488 floating operations,

eight gauge matrices and nine spinors are loaded and one spinor is stored. The Wilson-Dirac

kernel requires 2.06 bytes/flop in double precision and 1.03 bytes/flop in single precision, so its

performance is limited by the memory bandwidth. By referring a roofline model, we can

estimate the maximum performance of the Wilson-Dirac operator on single Tesla K40 as 139.8

GFlop/s for double precision and 279.6 GFlop/s for single precision.

2.2 Data structure consideration

There are two data forms to store structures: array of structure (AoS) and structure of

arrays (SoA) shown in Figure 1. In our previous work, we stored spinors and gauge matrices in

the AoS form for optimized Blue Gene supercomputer implementations [2][3] because this form

can efficiently exploit cache memory to handle continuous data elements in the structures. So

we apply AoS form to calculate Wilson-Dirac operator on the POWER8 processor However, the

SoA form is better suited for GPU computing, and many applications running on GPUs apply

this form to store data structures because it can supply continuous elements in arrays to the

streaming multiprocessors. The SoA form is also used in a common optimization technique

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

Early Performance Evaluation of Lattice QCD on POWER+GPU Cluster Jun Doi

4

called coalescing widely used in many GPU applications. Therefore, in this work we use the

SoA form to store spinors and gauge matrices to optimize our Wilson-Dirac kernel on the

Kepler GPU. We pack all elements in a 1-dimensional array with an X, Y, Z, T order.

Figure 1 Data structure comparison of spinor array in AoS and SoA forms

2.3 Offloading Wilson-Dirac operator on GPU

We limit the maximum problem size so that we can store all the necessary data on the

memory of GPU. So we previously transfer all the gauge matrix and spinor elements on the

GPU memory, thus we only have to transfer data between GPU and host when we exchange

boundary half-spinor elements between nodes or between GPUs.

We allocate one lattice site per one thread of streaming multiprocessor of GPU and we set

the number of thread per grid to multiple of 32 (= warp size) to maximize thread performance.

We used a least common multiple of 32 and size of X dimension.

Since we have 2 GPUs per node, however we do not have peer-to-peer capability on our

system, we exchange data between 2 GPUs via host’s memory. We exploit 1 process per node

and control 2 GPUs by switching by cudaSetDevice function.

2.4 Other optimization on GPU

Because the performance of the Wilson-Dirac kernel is limited by the memory bandwidth,

the performance improves when we increase memory access speed or decrease the total amount

of memory access itself. Since the Wilson-Dirac kernel uses an SU(3) gauge matrix, which has

special unitarity, 3 × 3 complex elements can be parameterized with 3 × 2 complex elements (12

real numbers). Using these parameterizations enables us to decrease memory access for the

gauge matrices, but additional calculations must be executed to reconstruct the gauge matrix

elements. Since GPU has strong calculation capability, we get better performance by the

additional calculation than to load full gauge matrix.

The SU(3) gauge matrix can be reconstructed from any of two rows or two columns

picked from the original 3 × 3 complex elements. Therefore, we only load the first two rows

from the 3 × 3 complex matrix and construct elements of the third row on the fly by

computation. When we define the SU(3) gauge matrix by Equation 4, the elements of the third

row are calculated by Equation 5.

SoA (Structure of Arrays)

Spin1_1[0]

Spin1_3[0]

Spin1_2[0]

Spin1_1[1] Spin1_1[2]

Spin1_3[1]

Spin1_2[1]

Spin1_3[2]

Spin1_2[2]

Spin2_1[0]

Spin2_3[0]

Spin2_2[0]

Spin1_1[N-1]

Spin1_3[N-1]

Spin1_2[N-1]

...

...

...
...

...

Array of 1 element of 3x4 spinor

...

AoS (Array of Structures) For POWER8

For GPU

Spin1_1[0] Spin1_2[0] Spin1_3[0] Spin2_1[0] Spin2_2[0] Spin2_3[0] Spin4_2[0] Spin4_3[0]...
1 structure of 3x4 spinor

A
rr

a
y

3
x
4

 s
p

in
o

r
e

le
m

e
n

ts

Spin1_2[1] Spin1_3[1] Spin2_1[1]Spin1_1[1] ... Spin4_2[1] Spin4_3[1]

...

Spin1_2[N-1] Spin1_3[N-1]Spin1_1[N-1] ...

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

Early Performance Evaluation of Lattice QCD on POWER+GPU Cluster Jun Doi

5



































210

210

210

ccc

bbb

aaa

C

B

A

 (4)

  BAC (5)

To reconstruct a gauge matrix, we need an additional 42 flops.

2.5 Parallelization of Wilson-Dirac operator

To parallelize the Wilson-Dirac kernel, we simply apply array decomposition to divide the

lattice into small domains for each distributed memory space. In the Wilson-Dirac kernel, each

lattice site refers to eight neighboring lattice sites, so boundary sites on the decomposed lattice

need to be copied to neighboring memory spaces. Since we have 2 GPUs per node we divide

lattice sites into 2 small domains for each GPU on the node. We divide lattice in Y, Z and T

dimensions, and we do not divide in X dimension because the X dimension is the innermost of

the array. If we divide in X dimension, the boundary data collection of the innermost of the

array will not be sequential access that causes performance loss.

To exchange boundary between nodes or between GPUs we have to transfer data between

GPU and host, then we can exchange boundary via MPI. To hide data transfer latency, we

overlap data transfer and calculation by using cudaMemcpyAsync and CUDA streams shown in

Figure 2. We exploit (2*dimension +1) CUDA streams to prepare and transfer half-spinor arrays

for each direction.

Figure 2 Overlapping data transfer and calculation by using CUDA streams

3. Performance evaluation

We implemented BiCGStab solver which uses Wilson-Dirac operator for matrix

multiplication and we implemented with even-odd preconditioning. We used 4 nodes of

POWER8 nodes which has 2 Tesla K40 GPUs and nodes are connected via Infiniband FDR. For

the comparison we also implemented another version for POWER8 by using OpenMP for in

node thread parallelization.

We used CUDA Toolkit version 7.0. And we used GNU compiler and OpenMPI version

1.8.4 for both GPU version and POWER8 version.

Y+ Y-Inner calculation

Y-

Y+

Z-

Z+

T-

T+

Inner Z+ Z- T+ T-

Making half-spinors

Minus direction
Matrix multiply

Plus direction

GPU-Host transfer MPI transfer (Async) Boundary calculation

Plus direction
Matrix multiply

Minus direction

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

Early Performance Evaluation of Lattice QCD on POWER+GPU Cluster Jun Doi

6

3.1 Performance of Wilson-Dirac operator on POWER8

Figure 3 shows the sustained performance of Wilson-Dirac operator exploited in the

BiCGStab solver in double precision. We observe good scaling both for strong and weak scaling

test. Since POWER8 processor has 12 cores, the performance is relatively well when the lattice

size is multiple of 12.

Figure 3 Sustained performance of Wilson-Dirac operator using POWER8 cores

3.2 Performance of Wilson-Dirac operator on Tesla K40 controlled by POWER8

We run both double and single precision using 2 GPUs per POWER8 node. Figure 4

shows the sustained performance for double precision and Figure 5 shows that of single

precision. We also observe good scalability for both strong and weak scaling test cases.

Comparing to POWER8 cases, the performance of 32x32x32x64 is relatively better in GPU

execution because warp size in streaming multiprocessor is 32.

Figure 4 Sustained performance of Wilson-Dirac operator using Tesla K40 GPU (double

precision)

(a) Strong scaling (b) Weak scaling

(a) Strong scaling (b) Weak scaling

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
2

Early Performance Evaluation of Lattice QCD on POWER+GPU Cluster Jun Doi

7

Figure 5 Sustained performance of Wilson-Dirac operator using Tesla K40 GPU (single

precision)

4. Summary

We implement Wilson-Dirac operator on the IBM POWER System which has Tesla GPUs.

We observe good scalability and we achieve 1 TFlop/s in double precision and 2 TFlop/s in

single precision using 8 Tesla K40 GPUs. However by comparing the performance of POWER8

and Tesla K40, the performance of K40 is about only 3 times better than that of POWER8 in

double precision because the performance of the Wilson-Dirac operator is bounded by the

memory bandwidth. We are thinking that the performance of POWER8 itself cannot be wasted

by this result. We will run the lattice QCD simulation in combination with both POWER

processors and GPUs in the future. Currently GPUs are attached to POWER8 via PCI express,

but in the future faster interconnect, NVLINK will be used to connect POWER processor and

GPUs. We will study how NVLINK takes advantage in lattice QCD simulation.

References

[1] http://openpowerfoundation.org/

[2] J. Doi, Performance evaluation and tuning of lattice QCD on the next generation Blue Gene,

PoS 25th International Symposium on Lattice Field Theory, Lattice2007, 2007.

[3] J. Doi, Peta-scale Lattice Quantum Chromodynamics on a Blue Gene/Q supercomputer, 2012

International Conference for High Performance Computing, Networking, Storage and Analysis

(SC12), 2012.

(a) Strong scaling (b) Weak scaling

