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This is an introductory level review of recent applications of resurgent trans-series and Picard-
Lefschetz theory to quantum mechanics and quantum field theory. Resurgence connects local
perturbative data with global topological structure. In quantum mechanical systems, this pro-
gram provides a constructive relation between different saddles. For example, in certain cases it
has been shown that all information around the instanton saddle is encoded in perturbation the-
ory around the perturbative saddle. In quantum field theory, such as sigma models compactified
on a circle, neutral bions provide a semi-classical interpretation of the elusive IR-renormalon,
and fractional kink instantons lead to the non-perturbatively induced gap, of order of the strong
scale. In the path integral formulation of quantum mechanics, saddles must be found by solv-
ing the holomorphic Newton’s equation in the inverted (holomorphized) potential. Some saddles
are complex, multi-valued, and even singular, but of finite action, and their inclusion is strictly
necessary to prevent inconsistencies. The multi-valued saddles enter either via resurgent cancella-
tions, or their phase is tied with a hidden topological angle. We emphasize the importance of the
destructive/constructive interference effects between equally dominant saddles in the Lefschetz
thimble decomposition. This is especially important in the context of the sign problem.
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Resurgence and Lefschetz thimbles Mithat Ünsal

“Nearly all natural problems with analytic data but without analytic solutions lead
to formal power series which turn out to be resurgent in some appropriate variable.
Viewed from that angle, the world of resurgent functions is almost coextensive with
the world of divergent expansions."

J. Ecalle Les Fonctions Resurgentes, Vol.-III

1. Introduction

In this brief review, we provide an introduction to the basic ideas underlying the application
of resurgence, trans-series and Lefschetz thimbles to problems in quantum mechanics (QM), and
quantum field theory (QFT). These tools have the potential to provide a new non-perturbative defi-
nition of QFT in the continuum, and which may also be computationally practical. A related goal is
to find new ways to perform numerical simulations of path integrals, for example for path integrals
with a sign problem, such as finite density QCD. These methods also provide a new perspective on
semi-classical methods in path integration, and lead us to reconsider from scratch the basic text-
book approach to semi-classics. Our goals are not specific to any particular QFT; rather we aim to
find techniques of universal character, providing insights to all QFTs.

The ideas from mathematics come from two beautiful and powerful notions:

• Resurgent trans-series which go beyond conventional asymptotic analysis [1, 2].

• Picard-Lefschetz theory, a complex version of Morse theory [3].

These two methods, one related to local analysis, and the other related to global topology, despite
sounding extremely different, are actually deeply related.1 At least for finite dimensional exponen-
tial type integrals,

∫
dx1 . . .dxN e−

1
λ

f (x1,...,xN), where f (x1, . . . ,xN) is meromorphic, local analysis
and global topology seem to be two sides of the same coin. In infinite dimensional path integrals,
the extent of the relation between the two is an open problem, which attracts the attention of mathe-
maticians and physicists alike [4, 5, 6, 7]. Our work in this direction may be viewed in two different
ways. One is extracting new physical phenomena that can be found from a proper semi-classical
analysis of the path integral, and the other is what can be viewed as "experimental mathematics",
i.e., finding new structure of the path integral and communicating this understanding to mathemati-
cians. We hope that this will lead to both mathematical and physical insights into the problem of
path integration. Specifically, we anticipate new ideas concerning:

• the practical geometric structure of field space (the surprise in resurgence is that it connects
local analysis to global structure/information),

• systems with an infinite number degree of freedom.

We discuss here insights from physics coming from two main sources:

1Resurgent analysis may possibly be even more general [1]. There are many problems which do not seem to arise
from integration, or do not admit a saddle point expansion, at least in any obvious way. Yet, there is still evidence that a
resurgent structure exists.
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• Exact/uniform WKB, or exact quantization conditions in QM, and their path integral impli-
cations [7].

• Semi-classically calculable compactifications and deformations of QFTs, systems with in-
finitely many degrees of freedom [6, 8, 9].

Calculable deformations and compactifications provide new windows into gauge theories on R3×
S1 [8, 5, 11], and into sigma models on R1×S1 [6, 10]. This step defines a regime in QFT in which
semi-classical analysis is reliable, and the theory is continuously connected to the strongly coupled
regime on R4 and R2, respectively. This gives a new semi-classical interpretation of the elusive
infrared renormalon of ’t Hooft, in a weakly coupled regime. This formalism also reveals a wide
new class of non-perturbative saddles, such as charged/magnetic and neutral bions, and their roles
in dynamics, e.g. mass gap generation, center symmetry and chiral symmetry realization.

Exact WKB/exact quantization conditions provide guidance to why observables in QM should
be resurgent [12, 13, 14]. A new application of uniform exact WKB yields a constructive formula
that means that one can deduce all non-perturbative data from perturbation theory, in certain QM
cases [7]. This is quite different from other forms of resurgence, which typically connect low
orders of perturbation theory around instanton saddles, to low orders of perturbation theory around
the perturbative saddle. Uniform WKB also has a natural geometric aspect; in particular, it directly
yields the correlated multi-instanton event amplitudes [7, 15]. In general, calculating the multi-
instanton amplitude used to be done using the Bogomolny/Zinn-Justin (BZJ) prescription [16], but
this is not always satisfactory, and can even lead to wrong results if not interpreted carefully. The
result from uniform WKB turns out to be consistent with multi-instanton calculus if one uses a
finite dimensional version of Picard-Lefschetz theory for the Lefschetz thimble description of the
quasi-zero mode integration cycles [17]. Furthermore, doing the quasi-zero mode integration via
Lefschetz thimbles fixes the problems with the BZJ-prescription.

Additional motivation and intuition comes from the many interesting results in recent appli-
cations of resurgence to matrix models, topological string theory and localizable SUSY gauge
theories [18, 19, 20, 21].

2. Saddle point method, and geometrization of Borel resummation

The saddle point method is standard textbook material, but it is actually much deeper than is
presented in many books, which generally only consider local quadratic fluctuations. The method
has two different parts: one is tied with local analysis, and the other with topology. Asymptotic
analysis around a given critical point of the action concerns a perturbative expansion around the
given point. The topological part concerns the deformation of the integration cycles, and also the
homology cycle decomposition of the original integration cycle. Our description of both steps will
be conceptual; see [2, 3, 4] for details.

Consider a finite-dimensional exponential integral of the form∫
Σ

dx1 . . .dxN e−
1
λ

S(x1,...,xN) (2.1)

where λ is a small parameter, and Σ is an integration cycle to be determined. Even if an ordinary
integral is formulated over real variables, the natural space in which the critical points (saddles)
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ρσ , and their critical point cycles Jσ , live is the complexification of the original space. Com-
plexification doubles the dimension, but the critical point cycles Jσ are middle-dimensional: their
dimension is the same as the original space, or half that of the complexified "field space".

As an example, for an ordinary integral over N-dimensional real space, this procedure is

Σ
N ⊂ RN −→ X = CN −→ Σ

N = ∑
σ

nσJσ , (2.2)

where the original integration cycle ΣN may be viewed as a real locus on the complex algebraic
variety X = CN :

Σ
N = ∑

σ

nσJσ , dimR(Jσ ) = N. (2.3)

For N = 1 this simply means that the original 1-dimensional integral cycle becomes a sum over
deformed 1-dimensional contours in the (2 real dimensional) complex plane. For finite dimensions
greater than 1, this decomposition becomes a very interesting problem, and the determination of
the thimbles amounts to solving the complex gradient flow equation [3]. The infinite dimensional
version of this construction was introduced by Witten for phase space QM and QFTs [22] (see also
[23, 25]). For an ordinary integral, the above prescription amounts to

I(λ ) =
∫
RN

dx1 . . .dxN e−
1
λ

S(xi)→∑
σ

nσ

∫
Jσ

dz1 . . .dzN e−
1
λ

S(zi) (2.4)

where Jσ can be found by solving a complex version of the gradient flow equations (also called
the Picard-Lefschetz equation)

∂ zi

∂τ
=− ∂ S̄

∂ z̄i
,

∂ z̄i

∂τ
=− ∂S

∂ zi
, (i = 1, . . . ,N), (2.5)

where τ is the flow time, and the over-bar means complex conjugation. Using (2.5) and the chain
rule, ∂ Im[S]

∂τ
= 1

2i

(
∂S
∂ zi

∂ zi
∂τ
− ∂ S̄

∂ z̄i

∂ z̄i
∂τ

)
= 0: the imaginary part of the action is invariant under the flow

Im[S(z1, . . . ,zn)] = Im[Sσ ] (2.6)

and (2.4) may therefore be re-written as

I(λ ) = ∑
σ

nσ e−
i
λ

Im[Sσ ]
∫

Jσ

dz1 . . .dzN e−
1
λ

ReS(zi) ≡∑
σ

nσ e−
i
λ

Im[Sσ ]Iσ (λ ) (2.7)

where Iσ (λ ) is the finite result of the integration over the thimble Jσ .
At this point, we may establish a connection between the Lefschetz thimble decomposition and

resurgent trans-series. Locally, around a critical point, Iσ (λ ) can be expanded into an asymptotic
power series, given by

Iσ (λ )∼ e−
1
λ

Re[Sσ ]∑
p

aσ
p λ

p = e−
1
λ

Re[Sσ ]Φσ (λ ) (2.8)

Φσ (λ ) is a formal asymptotic series, interpreted as the fluctuations around the saddle ρσ . The
integration over the thimble Jσ (θ) is equivalent to performing a directional Borel resummation
of the formal power series in some direction θ in the Borel plane [1]:

Iσ (λ ) =
∫

Jσ (θ)
dz1 . . .dzn e−

1
λ

S(zi)︸ ︷︷ ︸
integration over thimble

= e−
1
λ

Sσ Sθ Φσ (λ )︸ ︷︷ ︸
Borel resummation

, λ ≡ |λ |eiθ (2.9)
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In other words, the Borel resummation is equal to the integration over the thimble. An intuitive
reason why this is possible can be found in [2], but ultimately ties up with the fact that the Stokes
phenomenon is a co-dimension one effect.

Note that the (directional) Borel resummation is well-defined (unambiguous) for all directions
in which there is no singularity. In singular directions, Borel resummation is ambiguous: there is
a Stokes jump between the left and right resummation, along directions just to the left or right of
the singular direction. Analogously, the integration cycle is also ambiguous, and as one crosses a
Stokes ray, the thimble exhibits a jump,

Jσ (θ
−
0 )→Jσ (θ

+
0 )+nσσ ′Jσ ′(θ

+
0 ). (2.10)

For N = 1, this formalism is the well-known stationary phase approximation, with the natural
incorporation of the Stokes phenomenon [1, 2]. The definition of the Lefschetz thimble based on
stationary phase, Im[S(zi)−Sσ ] = 0, is only satisfactory for a one-dimensional integral. In that case,
this condition provides one real condition on a one-complex dimensional space, and determines the
thimble uniquely.

For N > 1, the integrand lives in a 2N (real) dimensional space, while the surface is N real
dimensional. The single stationary phase condition defines a co-dimension one (real dimension
2N−1) space, which is not the desired N real dimensional integration space. Instead, one needs N
real conditions to define the thimble. For finite dimensional integrals, Fedoryuk defines a steepest
surface (descent manifold) Jσ by using the complex gradient system, with initial conditions not
lying at critical points (otherwise, no flow will occur) [3].

This means that unlike the N = 1 case, for N ≥ 2 it is not so easy to determine which critical
points are relevant for the original integration cycle, ΣN . Howls proposes an algebraic approach to
this [2], based on a hyperasymptotic expansion of the late terms. Remarkably, ideas very close to
those of [2] are shown to work with infinite dimensional path integrals [24]. The analysis of [24]
shows that for a real periodic potential (a Jacobi elliptic function) the large-order behavior of the
perturbative expansion receives contributions from both real and complex saddles, even though the
theory is completely real, and the underlying path integral is a sum over just real paths. Somehow
perturbation theory “knows” that the real potential is also periodic in the complex direction, and so
has complex instantons. In other words, even though the Stokes multipliers of certain saddles are
zero, their imprint in large-order perturbation theory is clearly present.

One other difference between the N = 1 and N ≥ 2 case takes place once a Stokes phenomenon
occurs. In N = 1, when this happens, two critical points ρσ and ρσ ′ must lie on the same thimble.
In higher dimensions, two critical points no longer have to be on a hyper-surface which passes
through both ρσ and ρσ ′ simultaneously. The Stokes phenomenon in the N ≥ 2 cases may just
correspond to the meeting of two separate thimbles. This meeting will generically happen at a
a lower dimensional hyper-surface (like the join of two fingers of a glove, where the common
vanishing cycle will no longer be smoothly defined).

Stokes phenomenon, even in multiple dimensional integrals, is a co-dimensional effect. Only
one free parameter (e.g. phase of the coupling) is sufficient to observe the phenomenon. In this
sense, the Borel plane structure is a stratification of saddles and their Lefschetz thimbles. For a
nice discussion of this material, we refer to Ref. [2].

5
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To summarize, the Lefschetz thimble or resurgent trans-series decomposition of an ordinary
multi-dimensional exponential integral can in general be expressed as

I(λ ) = ∑
σ∈Active

nσ e−
i
λ

Im[Sσ ]e−
1
λ

Re[Sσ ]Sθ Φσ (λ ) (2.11)

where nσ are piece-wise constant multipliers. We sum over only active (contributing) saddles in a
given Stokes wedge, along with their multipliers. As one moves from one Stokes wedge to another,
these coefficients will jump.

The expansion (2.11) may be composed of hierarchical exponential factors, and one may be
tempted to think that just picking up the dominant saddle will suffice for asymptotic analysis. But
in a large-number of very interesting applications, both in QFT, QM, ordinary integrals as well as
matrix models, there are equally dominant saddles (whose real part coincide) but whose phases
differ. In such cases, there will be extremely important destructive/constructive interference effects
among saddles. The hidden topological angles in QM and QFT are examples of this type that we
discuss in Section.4.

Figure 1: (Left:) Critical points and their Lefschetz thimbles (descent cycles). (Right:) Borel plane struc-
ture. Circle denotes a branch point. Integration over thimbles is in one-to-one correspondence with direc-
tional Borel resummation.

2.1 Prototype “d = 0 path integral” example:

Consider a “zero dimensional path integral”, the ordinary integral Z(λ )= 1√
λ

∫ π/2
−π/2 dx e−

1
2λ

sin2 x

in the steepest descent method. There are two saddles: z0 = 0 (perturbative), and z1 = π/2 (non-
perturbative). To each saddle we associate a Lefschetz thimble (steepest descent path), J0(θ) and
and J1(θ), respectively, introducing θ = arg(λ ) to study properties of the integral under analytic
continuation. This integral can be studied either by using perturbative expansions around the sad-
dles, and subsequent Borel resummation of the associated asymptotic series, or by just performing
the integrals over the steepest descent cycles. These two procedures are actually the same.

By inspecting Fig. 1, we observe that the original integration cycle [−π/2,π/2) can be ex-
pressed at θ = 0− as J0(0−)+J1(0−). Upon Stokes jump, the monodromy of the cycles crossing

6
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the Stokes ray θ = 0 are:

J0 −→J0−2J1

J1 −→J1
or Ji→Ui j(θ = 0)J j with U	(0) =

(
1 −2
0 1

)
(2.12)

where U	(0) is an upper triangular matrix. The integration cycle at θ = 0+ is J0(0+)−J1(0+).
Note that the coefficient of the dominant perturbative saddle does not jump, but the J0(θ)

cycle jumps at θ = 0, and in contrast, the coefficient of the recessive non-perturbative saddle does
jump, but the J1(θ) cycle does not jump at θ = 0.

It is straightforward to show that
∫
J0(0+)−

∫
J0(0−), i.e, the discotinuity in the integral over

the two cycle is equal to the difference of the left/right Laplace integral of the Borel transform∫
C+−

∫
C−, see Fig.1. These are the left and right Borel resummations. Indeed, by a simple change

of variables, one can see that the integration over the thimble is actually Borel resummation. In
this sense, the Borel plane pictures are a stratification of saddles and their Lefschetz thimbles. This
idea for the multi-dimensional integrals is expressed in Pham and Howls in more detail [2, 3]. The
reason this is doable in a multi-dimensional integral is because the Stokes phenomenon is a co-
dimensional effect. Only one free parameter (e.g. phase of the coupling) is sufficient to observe
the phenomenon. An analogous example with three saddles points is analyzed in detail in [24].

3. Resurgence triangle in quantum mechanics and two different types of resurgence

In QM, there are two different types of resurgent relations. In order to describe this, it is
useful to define the "graded resurgence triangle" of QFT [6], here for quantum mechanics [7]. The
resurgence triangle is a trans-series decomposition of the path integral, expressed in terms of cells
(n,m), |m| ≤ n. The rows are sectors with fixed action (nSI), n = 0,1,2, . . ., in units of the instanton
action SI , and the columns are sectors with fixed topological charge |m| ≤ n. The usual topological
discussion in QFT and QM only distinguishes saddles according to topological charge, and all
events in a given column are in the same topological sector. But resurgence, or a general saddle
point decomposition, provides a more refined construction.

The resurgence triangle for the periodic potential (which also admits a topological charge) is
given by

1 f(0,0)

e−
SI
g +iθ f(1,1) e−

SI
g −iθ f(1,−1)

e−
2SI
g +2iθ f(2,2) e−

2SI
g f(2,0) e−

2SI
g −2iθ f(2,−2)

e−
3SI
g +3iθ f(3,3) e−

3SI
g +iθ f(3,1) e−

3SI
g −iθ f(3,−1) e−

3SI
g −3iθ f(3,−3) (3.1)

In the periodic potential case, we can introduce a topological θ -angle. Since perturbation theory
around any sector is independent of the θ angle, sectors with different θ dependence cannot mix
with each other in the cancellation of the non-perturbative ambiguities. There are two essential
type of non-perturbative ambiguities.

7
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• Ambiguity associated with non-Borel summability of perturbation theory around the pertur-
bative vacuum, and around any other saddle. Thus, for the QM periodic potential problem,
all formal series f(n,m) are non-Borel summable, i.e, the sum is ambiguous.

• Ambiguity in the definition of "n-defect" amplitudes. An n-defect is a correlated event of n
instantons and anti-instantons. The amplitudes at the edges of the triangle (n-strict instantons
or anti-instantons) are ambiguity free (as can be deduced by integrating over the quasi-zero
mode.) Indeed, this must be the case, because these are the lowest action configuration in the
corresponding homotopy class. All amplitudes in the interior of the triangle are ambiguous,
but in a calculable way.

The information in the m-th column of the resurgence triangle is contained in the twisted partition
function Zm, with the insertion of the translation operator T .

Z(β ,g,θ) =
+∞

∑
m=−∞

eimθ Zm(β ,g), Zm = tr T me−βH =
∫

x(t+β )=x(t)+m π

g

Dx(t)e−
1
g S[x] (3.2)

Resurgence (conventional): Usual resurgence connects saddles within a given topological sector.
For the cosine potential the late terms around the perturbative saddle [0,0] diverge as [7]

c[0,0]n ∼ n!
(2SI)n

(
1− 5

2
· (2SI)

1

n
− 13

8
· (2SI)

2

n(n−1)
+ . . .

)
(3.3)

while the imaginary ambiguous part of the [IĪ] contribution to the ground state energy is

Im[IĪ]± ∼±πe−(2SI)/g
(

1− 5
2
·g− 13

8
·g2 . . .

)
(3.4)

Note the correspondence between the coefficients in these two very different expansions. This is a
late term/early term relation in the following sense: Late terms (around the dominant saddle) and
the subleading 1/n corrections to them, encode information about early terms in the perturbative,
expansion in g around a subdominant saddle. Thus the n!-diverging late terms are not meaning-
less or a nuisance (as Berry puts it), but contain exact coded information about another saddle in
the problem, in this case, the instanton-anti-instanton saddle. Similarly, the large-order behavior
of the fluctuations about the single-instanton saddle are directly related to the low orders of the
fluctuations about the [IIĪ] saddle, and so on. This structure is an imprint of resurgence, and for
resurgent functions such relations exist essentially universally, intrinsically tied to the cancellations
that define the trans-series as describing a unique well-defined function [21].

This result tells us that perturbation theory by itself is pathological, and so is the semi-classical
[IĪ]± saddle. But in combination, the pathological parts “cure” each other. Namely, the imaginary
ambiguous part associated with the Borel resummation of the perturbation theory, B f(0,0),±, cancels
against the ambiguity of the [IĪ]± amplitude:

ImB f(0,0),±+ Im[IĪ]±B f(2,0),±+ . . .= 0 (3.5)

As a result, the topological charge zero column in the resurgence triangle gives a meaningful,
real, and ambiguity free result. This is the sense in which resurgence renders the combination

8
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of the perturbative and non-perturbative expansion meaningful, and it may potentially provide a
non-perturbative definition of path integral.

This structure is extemely elegant; but the story is even more interesting as discussed next.

Resurgence (new): The conventional resurgent cancellations do not imply any relation between
the perturbative vacuum saddle and the instanton saddle, or the two-instanton [II] saddle etc; in
other words between different columns of the resurgence triangle (3.1). In fact, there cannot exist a
usual resurgence type relation between a perturbative saddle and an instanton saddle, because per-
turbation theory is independent of the topological theta angle while the instanton saddle depends
on it. Thus a pathology of perturbation theory cannot be cancelled by a pathology of the instanton
saddle. Nevertheless, there is such relation, it is simple and it is constructive. By constructive,
we mean, for example, that if you know a certain number of orders of perturbation theory around
the perturbative saddle, you can immediately write down the same number of orders of the pertur-
bation theory around the instanton saddle. Namely, unlike conventional resurgence, it is an early
term/early term relation, rather than a late term/early term relation.

Here we present the basic story of this relation. For details see [7]. Our goal was to understand
the physical origin of the resurgent trans-series in QFT and QM. We decided to use elementary
WKB methods to study the origin of the exact quantization condition, which is a generalization
of the Bohr-Sommerfeld quantization condition to all orders in h̄. The state of the art was the
remarkable work of Zinn-Justin and Jentschura (see [13] and refs therein). Their work proposed an
exact quantization condition which involves two functions, called A(E,g) and B(E,g), where E is
the energy and g the small parameter. An expansion of this (transcendental) quantization condition
for small g produces a trans-series expression for the energy levels. Solving B(E,g) = N + 1

2 ,
where N is the level number for E, produces the usual Rayleigh-Schrodinger perturbation theory
for the Nth unperturbed level. A(E,g) is much more difficult to calculate in the ZJ formalism, and it
encodes information about the instanton sector and the fluctuations around it to all orders. Despite
this difficulty in calculating it, the final result of ZJ result is elegant, and naturally incorporates all
multi-instanton sectors and resurgent cancellations. We wanted to rederive it in our own way, and
in the process discovered something quite surprising.

We used “uniform-WKB", an approach to WKB that is smooth across the classical turning
points [7]. Since the relevant problems have harmonic minima that are very deep as g→ 0, one
rewrites the solution in terms of the solution of the harmonic well problem, namely the parabolic
cylinder functions. Such a representation is smooth across the turning points, unlike conventional
WKB. Then the global boundary condition (the Bloch boundary condition for the periodic po-
tential, or parity for the symmetric double-well potential) combined with the known (resurgent)
asymptotics of the parabolic cylinder functions leads to the counterpart of the exact quantization
condition of Zinn-Justin and Jentschura, but with a slightly different perspective. Instead of writing
B(E,g) and A(E,g), it is more natural in the uniform WKB approach to write E(B,g) and A(B,g),
expressing the energy and instanton factors as a function of the level number B = N + 1

2 and cou-
pling g. This is just an innocent looking inversion, but it reveals a surprisingly simple relation
between the two functions:

∂E
∂B

=− g
2SI

(
2B+g

∂A
∂g

)
(3.6)

9
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where SI is a numerical coefficient equal to the single-instanton action. This relation has a remark-
able implication: given the input of E(B,g), which is equivalent to knowing perturbation theory
around the perturbative vacuum, one can immediately derive, in one line, the fluctuations around
any higher instanton sector. For example, for arbitrary level number N, the fluctuations around the
one-instanton sector can be written to any desired order, simply given the perturbative expression
to that order: For the double-well potential the result is

e−
SI
g

[
1+g (−102N2−174N−71)

72 +g2 (10404N4+17496N3−2112N2−14172N−6299)
10368 + . . .

]
(3.7)

and a similar result applies for the periodic potential, and others [7]. Furthermore, one can also
write similar relations for higher instanton sectors. The conclusion is that the two functions, B and
A, which enter the exact quantization condition are not actually independent of one another: the
non-perturbative function A is encoded in the perturbative function B.

This is astonishing. A direct Feynman-diagrammatic computation of the fluctuation in (3.7),
even for the N = 0 ground state, involves many Feynman diagrams, in which the propagators are
not free propagators, but propagators in an instanton background. A recent 3-loop computation
[26], for both the double-well and periodic potentials, has confirmed the result (3.7) for the N = 0
level where they were able to compute. In fact, not all of the more than 20 three-loop diagrams
could be computed analytically, so their numerical result for the double-well potential was:

e−SI/g
[

1− 71
72

g−0.6075424g2 + . . .

]
(3.8)

We see the 71/72 coefficient, and the next coefficient agrees with 6299/10368 to 7 decimal places.
At the very least, this agreement suggests that there must be an easier way to compute the

fluctuation in (3.7), within the path integral Feynman diagrammatic method. Why (3.6) works the
way it does, and why the relation between the instanton saddle and the perturbative saddle is so
simple, are currently open questions. And can one prove (3.6) using purely functional integral
methods? It is apparent that there is an infinite set of relations between the infinite set of saddles
in quantum mechanical systems, and that perturbation theory around the perturbative saddle can
be used constructively to build all other saddles and fluctuations around them. This is very likely
related to a non-perturbative version of the Schwinger-Dyson equation (with finite + infinitesimal
transformations, instead of only infinitesimal), and also to the fact that alien derivatives in the
resurgent theory form an infinite dimensional free Lie algebra. At any rate, this is an extreme and
constructive form of resurgence, that seems also to be computationally powerful. More thinking
on this issue is clearly warranted.

4. Semi-classics revisited: the role of complex multivalued saddles

An extremely interesting and deep problem in semi-classics is the following: Can complex
configurations contribute in a semi-classical representation of a real physical path integral with real
parameters (i.e., with a Hilbert space interpretation)? And, if so, what are the regularity require-
ments on these complex solutions? Can the solutions be multi-valued, or possibly even singular?

Surprisingly, until recently these questions have not received the attention we feel they deserve.
Complex saddle solutions are not discussed in standard QFT textbook treatments of semi-classics

10
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and instantons [27, 28]. A recent paper gives a serious deliberation on some of these issues in the
context of analytic continuation of Liouville theory [29]. But it remains undecided, quote: "We
do not have a clear rationale for why this [inclusion of multi-valeud “solutions"] is allowed". The
physical concern of Ref. [29] is that a multi-valued saddle would lead to a multi-valued observable,
while observables must be single valued. We will see that these issues get resolved with the use
of resurgence. In our recent work [30], we have argued for the following necessary and sufficient
steps for the proper semi-classical treatment of path integrals of quantum mechanics:

1) Complexification: The action functional should be turned into a holomorphic functional
of the field variables, even for real values of the coupling. Given a Euclidean Lagrangian
1
2 ẋ2 +V (x), turn it into 1

2 ż2 +V (z), where z(t) = x(t)+ iy(t).

2) Holomorphic Newton’s equation: The saddle fields should be found by solving the holo-
morphic version of Newton’s equation in the inverted holomorphic potential:

d2z
dt2 =

∂V
∂ z

or equivalently
d2x
dt2 =+

∂Vr

∂x
,

d2y
dt2 =−∂Vr

∂y
, (4.1)

where V (z) = Vr(x,y)+ iVi(x,y), and the potential satisfies the Cauchy-Riemann equations,
∂xVr = ∂yVi and ∂yVr = −∂xVi. The holomorphic (Newton’s) equations are of fundamental
importance for semi-classics, and they are not same as the usual Newton’s equation in the
inverted potential: d2x

dt2 = + ∂V
∂x . The generic solutions here will be complex and possibly

multi-valued. The integration cycles attached to critical points are found by using Picard-
Lefschetz theory (the complex version of Morse theory).

3) Perturbation theory: Develop perturbation theory around the perturbative vacuum. This
can be done by the Bender-Wu method [31] to all orders, and generically results in asymp-
totic divergent series.

4) Resurgence: The multi-valuedness of the saddles cancels against multi-valuedness of the
Borel resummation of the divergent series, yielding single valued observables. We refer to
this generalized summability as Borel-Ecalle (BE)-summability.

These four items are integral. One cannot consider any one of them in isolation and hope to
get a consistent treatment of the path integral or perturbation theory. Each one of them will yield
in a certain way pathological results and only in combination will one get a meaningful result.

4.1 Quantum mechanics of a particle with internal spin

The clearest and most dramatic example showing the necessity of complex saddle solutions
arises in the study of supersymmetric quantum mechanics. Consider a particle with position x(t)
and internal spin 1

2 , with Euclidean Lagrangian:

LE = 1
2 ẋ2 + 1

2(W
′)2 +(ψ̄ψ̇ +W ′′ψ̄ψ) (4.2)

Bosonize this quantum mechanics by quantizing, and then projecting fermions to spin eigenstates.
This results in a sequence of graded Euclidean Lagrangians L± = 1

g

(1
2 ẋ2 + 1

2(W
′)2± 1

2 gW ′′
)
. If

11
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Figure 2: (Left:) Red is bosonic potential, and black is the graded potential (obtained upon projecting to a
fermion number eigenstate.) (Left:) Inverted graded potential and types of interesting saddles.

Figure 3: Exact solutions: Bounce, real bion and complex bion.Compex bion is multi-valued,and singular.
The other solution is complex conjugate of the one in figure.

we choose W (x) to be a periodic function, for example W (x) = cos x
2 , we may identify x = x+4π

as the same physical point, corresponding to a particle on a circle, rather than in an infinite lattice.
This theory has supersymmetric Witten index IW = 0, yet supersymmetry is unbroken [32].

It has two supersymmetric ground states, one in the bosonic and the other in the fermionic sector
(spin up and down sectors). Thus, the ground state energy is zero to all orders in perturbation
theory and also non-perturbatively: E0 = 0.

Let us try to reproduce this result from the completely bosonized picture without any recourse
to supersymmetry. Looking at the inverted potential, shown in Figure 2, there is a clear real saddle
solution, that we refer to as a real bion, interpolating from [0→ 4π]. The amplitude of the real
bion, up to prefactors is [RB]∼ e−Srb . There is also a real bounce solution, but it is not related to
ground state properties. The contribution of the real bion to the ground state energy is negative.
This means that if the Euclidean path integral is restricted to only real paths in a semi-classical
treatment, then the supersymetry algebra (which demands positive semi-definiteness of the energy)
and semi-classics (based on real saddles) are in contradiction.

The resolution is that there is nothing wrong with the supersymmetry algebra, or with semi-
classics. But we must expand our view of semi-classical analysis to include complex saddles, just
as we do for ordinary contour integrals. The standard semi-classical analysis, restricted to real
saddles, is incomplete and will lead to inconsistencies and wrong results, as above. Correct semi-
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classics necessitates complexification of the path integral. Once this is done, there is a complex
solution, that we call the complex bion, and it restores the consistency of supersymmetry and the
semi-classical expansion [30].

For the case of the periodic bosonic superpotential W (x) = cos x
2 , the complex bion can be

found exactly [30], and its form seems to defy almost all standard intuition about semi-classics.
The complex bion is complex, multi-valued, and singular, and yet it has finite action and contributes
to path integral. The real and complex bion amplitudes are

[RB]∼ e−Srb , [CB] = [RB]e±iπ ∼ e−Srb±iπ (4.3)

Note that the imaginary part of the complex bion action is ±π . Thus, the contribution of the com-
plex bion saddle to the ground state energy is actually positive, the opposite sign of the contribution
of the real bion saddle. (This is contrary to the folklore which states that non-perturbative effects
in bosonic systems must always reduce the ground state energy.) Hence, the ground state energy to
this leading order of semi-classics is

∆Enp
0 = 0+(−2−2eiπ)e−Srb = 0 (4.4)

Here 0 is the perturbative saddle contribution, and the negative and positive non-perturbative contri-
butions are due to the real and complex bions, respectively. Complexification of the semi-classical
representation of the path integral prevents a contradiction between the supersymmetry algebra and
semi-classics.

A particular deformation of the supersymmetric theory is very enlightening [33, 30]. Deform
the Yukawa term in (4.2) into pW ′′ψ̄ψ , where p is the supersymmetry breaking deformation param-
eter. Then, for p 6= 1 the ground state energy is neither zero perturbatively nor non-perturbatively.
The complex bion amplitude becomes ambiguous [CB] = [RB]e±ipπ and the perturbative contri-
bution to the ground state energy becomes non-vanishing and non-Borel summable. By resurgence,
these two pathologies cancel each other, similar to (3.5), but now as ImBE0,±+ Im[CB]±+ . . .= 0
Consequently, the ground state energy takes an ambiguity free form:

∆Enp
0 = ReBE0 +[RB]+Re[CB] = ReBE0 +(−2−2cos(pπ))e−Srb +O(e−2Srb) (4.5)

4.2 Hidden topological angles (HTA) and sign problem

It is now appropriate to comment on the hidden topological angles and their importance in
semi-classical analysis, as well as in Lefschetz thimble decompositions, both in continuum and
lattice field theory and simulations. These angles may lead to crucial destructive/constructive in-
terference effects (in a Euclidean sense) among Euclidean saddles, as in (4.5). The above exam-
ples also show that in an attempt to perform lattice simulations using Lefschetz thimbles, e.g.,
[34, 35, 36, 37], all thimbles with non-vanishing Stokes multipliers must be carefully summed over
to correctly capture the dynamics of the theory. Not doing so will result in erroneous results in gen-
eral, especially in the presence of equally dominant saddles with different phases. This perspective
is especially emphasized, with evidence from concrete examples, in [17]. It is important to note
that this is not an exponentially small sub-leading resurgent cancellation. Rather, it is a competition
between equally dominant effects in observables, as in (4.5).

13



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
1
0

Resurgence and Lefschetz thimbles Mithat Ünsal

For example, in the supersymmetric QM example above, if one only takes into account the real
bion saddle, one deduces a negative ground state energy, which contradicts the SUSY algebra. If
one only takes into account the complex bion saddle, one deduces positive energy, in contradiction
to the fact that SUSY is unbroken in this model. If one just takes into account the perturbative
saddle, one will get zero, but this is an accident. For example, in a model which breaks supersym-
metry, the perturbative saddle contribution would still be zero, but the non-perturbative complex
bion contribution is positive definite, and it is necessary to sum up over the two in order to obtain
the correct non-perturbative behavior [30]. As emphasized, in general, one needs to add up all
saddle contributions whose Stokes multipliers are non-vanishing. Indeed, recent lattice and ana-
lytical studies confirm the correctness of this perspective, also in theories with the sign problem
[38, 39, 40, 41]. Ref. [42] proposes a method to introduce the HTAs to fix certain pathologies of
the complex Langevin method.

Hidden topological angle in 4d QFT: N = 1 SYM is a special theory in 4d. On one hand, it is
a vector-like (QCD-like) theory (in its technical sense, a theory without elementary scalars), and
it is also an integral part of SQCD. The gluon condensate 〈 1

N trF2
µν〉 is an order parameter in this

theory, and as such, must vanish since supersymmetry is unbroken [32]. However, vanishing gluon
condensate is puzzling if one does not use tools of supersymmetry. In Euclidean space, integrating
out fermions results in a positive definite measure, and 1

N trF2
µν is also positive definite. Then, how

can one explain the vanishing of the condensate from a semi-classical point of view?

Figure 4: Saddles in N = 1 SYM. Note the HTA associated with neutral bion.

The resolution is relatively counter-intuitive. Although this is a problem without a sign prob-
lem in the space of real fields, the path integral needs to be holomorphized as in the QM example,
and as such, it will now possess a sign problem! Then, in semi-classics, there are saddles with com-
plex phases. In order to do semi-classics reliably, compactify the theory on a small R3×S1

L, where
the theory becomes weakly coupled, and yet continuously connected to R4 (for periodic boundary
conditions for fermions). It has three types of interesting saddles. These are: monopole-instantons,
with amplitude Mi = e−S0(αi ·λ )2, magnetic bions with amplitude Bi j = [MiM j] = e−2S0 . . ., and
neutral bions, Bii = [MiM i] = e−2S0+iπ . . .. where αi, i = 1, . . . ,N is an element of the affine-root
system, and Bi j and Bii are non-vanishing ∀Âi j < 0, and ∀Âii > 0 entries of the extended Cartan
matrix. Note that the monopole action is S0 =

8π2

g2N = SI
N , thus these saddles are exponentially more

important than the 4d instanton with action SI . Since monopoles have fermion zero modes, they
do not contribute to 〈 1

N trF2
µν〉. But magnetic and neutral bions do, and their densities are the same!

However, there is a Z2 worth of relative phase between the two saddles/thimbles:

Arg(JBii) = Arg(JBi j)+π (4.6)
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Consequently, contrary to the folklore which states that non-perturbative contributions to the gluon
condensate must be positive, there exists both positive and negative contributions:

〈 1
N trF2

µν〉 ∝ (nBi j + eiπnBii) = e−2S0 + e−2S0+iπ = 0 . (4.7)

This reflects the importance of summing over all active saddles in the Lefschetz thimble decompo-
sition (2.11). Otherwise semi-classical analysis would result in a contradiction with the supersym-
metry algebra; see [17, 30] for details, and also non-supersymmetric examples.

5. QFT: Sigma models, gauge theories and renormalon puzzle

One may hope that the mechanism of resurgent cancellation that applies so nicely in QM also
applies to asymptotically free QFT, such as the two-dimensional CPN−1 sigma model, but it is
well-known that this is not the case. More than three decades ago, ’t Hooft argued that the Borel
transform of perturbation theory not only has Borel-plane singularities at multiples of t = 2SI , but
also far more dominant singularities at tIR

n = n 2SI
β0

, on the positive real axis R+ in the Borel plane,
called IR-renormalon singularities.

Of course, the usual semi-classical method does not apply on R2 for sigma models. In partic-
ular, the so called “dilute instanton gas approximation" is not a well-defined approximation on R2.
The instantons have a size modulus, and the first assumption of the dilute instanton gas, that the
separation between instantons must be much larger than the instanton size, is violated.

The instanton size modulus problem can be controlled by compactifying the theory on a small
circle, but doing so in a conventional (thermal) way results in a thermal regime of the sigma model
in which the microscopic degrees of freedom are ungapped and liberated. In fact, the free energy
scales as NT 2, the usual Stefan-Boltzman law, and such a small-circle regime is not sufficiently re-
lated to the large-circle or infinite volume regime. Instead, we use an idea that has first developed in
the context of gauge theory [9]. It is the idea of adiabatic continuity. In gauge theory on R3×S1, the
small circle theory can be deformed by a double-trace operator such that the small-circle and large-
circle physics are continuously connected. This can also be achieved by having adjoint fermions
and endowing them with periodic (rather than anti-periodic) non-thermal boundary conditions
[8, 44]. The counter-part of this step in sigma models is the twisted boundary conditions , where
fields are not periodic on S1, rather rotated by a unitary twist matrix Ω = Diag(1,ei 2π

N , . . . ,ei 2π(N−1)
N ),

which guarantees that the small and large-circle regimes are adiabatically connected.
Once these twisted boundary conditions (tbc) are used, several remarkable things happen [6,

43]. It is useful to represent what happens in contrast to periodic boundary conditions (pbc).

• With tbc, the quantization of momentum in the compact direction becomes in units of 2π

LN
rather than the usual Kaluza-Klein momentum 2π

L , which is the case with pbc. The 2π

LN
spacing is very peculiar, because it tells you that even at finite-L, you can turn the perturbative
spectrum into the continuum one, exactly as in R2. This is indeed an imprint that at large-
N, these compactifications satisfy large-N volume independence (Eguchi-Kawai or large-N
reduction). This fact already tells you that the small-circle limit obtained in this manner must
be special.
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Figure 5: (Left) Borel plane for the CPN−1 model on R2 and R1×S1. (Right) Fractionalization of instanton
into N fractional instantons upon imposing twisted boundary conditions. Figure is for CPN−1 with N = 4.

• With pbc, the small-circle limit is described by a quantum mechanical particle on the CPN−1

manifold, e.g. particle on S3 for N = 2. With tbc, the QM is a particle on CPN−1, as well
as a potential on it with N minima, e.g. particle on S3 for N = 2, where the north and south
pole are minima of a potential, with a barrier in between. This additional potential has an
interesting implication for instantons.

• With pbc, the instanton of the theory on R2 does not fractionalize. With tbc, the instanton of
the theory fractionalizes into N kink-instantons. The ith kink-instanton action is Si =

SI
N = SI

β0
.

The size modulus problem is fixed by tbc in a good way, see below. The kink-instantons
Ki, i = 1, . . .N are the leading saddles and are associated with the affine-root system of the
su(N) algebra.

• The mass gap in the reduced QM is a kink-instanton effect and is given by mg∼ (LN)−1e−Si =

(LN)−1e−
SI
β0 = Λ, where Λ is the strong scale of the theory. This means, the non-perturbative

small-circle dynamics remembers the strong scale of the theory, and in fact, this is nothing
but the (expected) mass gap in the decompactification limit. In contrast, the long distance
dynamics in pbc totally forgets the strong scale. The "unforgetfulness" of tbc is remarkable.

• Now comes the issue about renormalons. Of course, IR-renormalons on R2 are due to phase
space integration, from the exponentially low momentum region. In reduced QM (with tbc),
the renormalon type divergence∼ n!

(2SI)n is reproduced by the combinatorics [45, 6]. (By con-
trast, pbc with regular reduction has no memory of the IR-renormalon singularity.) Studying
the large-orders of perturbation theory for the reduced theory, and its Borel resummation,

one finds that the ambiguity in the Borel resummed perturbation theory is of order e−
2SI
β0 ,

with a singularity at Borel plane at tIR = 2SI
β0

.
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• At second order in the semi-classical expansion, the saddle structure is universal and dictated
by su(N) algebra data. For all non-vanishing entries of the extended Cartan matrix Âi j,
there exists a non-selfdual saddle, charged bions [Bi j] = [Ki ¯K j] for Âi j < 0, and neutral
bions, [Bii]± = [Ki ¯Ki]± for all Âii > 0. Neutral bions, as in our QM analysis, are two-fold
ambiguous.

• The imaginary ambiguity in neutral bions (∼±ie−
2SI
β0 ) cancels exactly the ambiguity in Borel

resummed perturbation theory, ImBE0,±+[Bii]± = 0. The location of the neutral bion ambi-
guity at small R1×S1 is exactly the location of the elusive ’t Hooft IR-renormalon ambiguity
for the theory defined on R2. This is the sense in which our neutral bions are continuously
connected to the IR-renormalons (or what becomes of IR-renormalons in the small-circle
weak coupling regime). See Fig. 5, left.

Non-selfdual saddles and sigma models without instantons: Perhaps even more interesting
than this resurgent cancellation in the 2d CPN−1 sigma model, between ambiguities of Borel non-
summable perturbation theory and certain non-perturbative neutral bion objects, is the fact that this
also happens in other sigma models which have no instantons. For example, the Principal Chiral
Model and the O(N) sigma model have the same IR renormalon problems in the perturbative sector,
but have no instantons. At first sight this would seem to doom to failure the resurgent cancellation
mechanism. However, these sigma models have finite action saddle solutions, solutions to the sec-
ond order Euclidean equations of motion, and their action is quantized. These classical solutions
had been neglected previously as being unphysical, as they have negative fluctuation modes, but in
fact they play a role similar to that of an instanton/anti-instanton configuration in the CPN−1 model.
With tbc in the compactified theory these non-BPS saddles fractionalize, in just the correct manner
to correspond to the beta function coefficient. These fractionalized saddles are more dominant in
the semi-classical expansion, and lead to the cancellation of ambiguities arising from the Borel
non-summability of the perturbative sector [10].
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