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Scattering and transition amplitudes with three-hadron final states play an important role in nu-
clear and particle physics. However, predicting such quantities using numerical Lattice QCD is
very difficult, in part because of the effects of Euclidean time and finite volume. In this review
we highlight recent formal developments that work towards overcoming these issues. We orga-
nize the presentation into three parts: large volume expansions, non-relativistic nonperturbative
analyses, and nonperturbative studies based in relativistic field theory.

In the first part we discuss results for ground state energies and matrix elements given by expand-
ing in inverse box length, 1/L. We describe complications that arise at ¢(1/L°) and include a
table summarizing the results of different calculations.

In the second part we summarize three recent non-relativistic non-perturbative studies and high-
light the main conclusions of these works. This includes demonstrating that the three-particle
finite-volume spectrum is determined, up to exponentially suppressed effects, by on-shell ampli-
tudes, as well as recovering a finite-volume quantization condition for scattering a stable particle
off a two-particle bound state. In this part we also highlight recent work concerning a three-
particle bound state in a finite volume.

In the third and final part, we review recent work based in non-perturbative relativistic field the-
ory. Here the finite-volume spectrum has been related to an intermediate infinite-volume quantity
which itself is related via a known integral equation to the relativistic, model-independent three-
particle scattering amplitude. We motivate the appearance of the intermediate quantity, explain
how it is related to the standard amplitude, and discuss prospects for using the result to constrain
three-particle observables.
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Over forty years after its formulation, we still have an incomplete understanding as to how
quantum chromodynamics (QCD) reproduces the resonances observed in nature. There is over-
whelming evidence that the observed spectrum arises from the fact that the QCD coupling grows
as the energy scale is lowered. This results in quark confinement, so that the low-energy degrees
of freedom are hadrons, built from quark constituents. The growth of the coupling also inval-
idates perturbation theory, necessitating the use of a non-perturbative approach, such as lattice
QCD (LQCD), to study such states.

To describe resonances one ideally aims to extract scattering amplitudes. Continuing such
amplitudes to poles in the complex energy plane then gives model-independent resonant masses
and widths. However, in numerical LQCD it is only possible to access correlators with Euclidean
time coordinates, at a finite lattice spacing, and in a finite volume. For hadronic scattering, the
restriction to Euclidean time is particularly problematic. At large time separations the relevant
matrix elements are dominated by off-shell states [1] and analytic continuation of the numerical
results to Minkowski-time correlators is generally an ill-posed problem [2].

One can overcome this issue by viewing finite volume as a tool rather than an unwanted ar-
tifact. In particular, Liischer showed that for identical scalar particles the finite-volume energy
spectrum is related to the two-to-two scattering amplitude [3, 4]. This result has since been gen-
eralized to accommodate non-zero total momentum [5, 6, 7], non-identical, non-degernate parti-
cles [8, 9], multiple, strongly-coupled two-particle channels [10, 11, 12, 13] and particles with
intrinsic spin [14, 15, 16, 17].!

The relations generally take the form of a quantization condition

det[(.#5) '+ F] =0. (1)

The energies for which this equation holds define the finite-volume spectrum of the theory. Here
M is the two-to-two scattering amplitude, viewed as a matrix for a given fixed value of center
of mass (CM) frame energy. In the case of a single channel of scalar particles .#, has indices
¢,m;{';m' which denote the incoming and outgoing two-particle angular momentum. To incorpo-
rate multiple channels as well as nonzero spin one must enlarge this space to describe the additional
degrees of freedom. F is a matrix on the same space as .7/, that encodes the effects of finite-volume.
It is a known function, independent of the dynamics of the system.

Various features are common to the results of Refs. [3]-[17] that are summarized by Eq. (1).
All results are valid up to neglected corrections of the form e~"=L, with m, the physical pion mass
and L the extent of the finite-volume. In addition, for all variations of the quantization condition, the
matrix appearing inside the determinant is formally infinite dimensional. Thus, to use the relation
in order to extract amplitudes, the matrices must be truncated. It turns out to be enough to truncate
#>; one may then project F' to the same subspace with no additional approximation. Neglecting
higher components of .#5 at low energies is well motivated because these are suppressed by p*
where p is the magnitude of momentum in the CM frame and / is the orbital angular momentum.
In the case of identical scalar particles with zero total momentum, truncating to the s-wave gives
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IFor numerical applications see, for example, Refs. [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
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where 8 is the s-wave scattering phase shift. For each finite-volume energy level, E,, = 2./ p2 + m?,
in a given box size L, Eq. (2) gives the s-wave scattering phase shift at p,,.

Also common to these formulations is the restriction to two-particle states. More precisely,
the quantization conditions may be used up to the production threshold for more than two particles.
Any resonance decaying into more than two hadrons is thus inaccessible using these results.

In this review we summarize progress towards relating finite-volume quantities and scattering
observables in the three-particle sector. Such work is motivated in part by a wide variety of interest-
ing three-particle resonances. For example the mass of the Roper resonance turns out to be lower
than that of the negative-parity ground state, inconsistent with quark model predictions. Since the
Roper decays with 40% branching fraction into Nz [29], the lattice can only resolve the nature of
this state with a reliable three-particle formalism. Beyond this, such formalism is a necessary first
step towards describing any scattering or decay processes involving more than two hadrons.

The remainder of this review is organized as follows: In the following section we describe
results for energies and matrix elements, obtained by expanding in inverse box length, 1/L. In
Sec. 2 we summarize various non-perturbative studies based in non-relativistic field theory. Then,
in Sec. 3 we describe work based in relativistic field theory that, with certain restrictions, relates the
three-particle finite-volume spectrum with scattering amplitudes. We briefly conclude in Sec. 4.

1. Large volume expansions

If the box length, L, is much larger than any other length scale in the system, then it is useful to
express the ground state energy as a power series in 1/L. This was already accomplished through
¢(1/L°) by Huang and Yang in 1957 [30]. In the notation of Ref. [31], their result for the n-boson
ground state in a periodic finite volume is

o) - 280 ()~ () ()2 |
(G {0 = 0) Q)] o

where m is the physical particle mass, a is the scattering length in the nuclear physics convention
(a > 0 for repulsive interactions) and .# and ¢ are geometric constants given by?
[n|<A 1
= li — —4nA = —8.91363291781 = — = 16.53231 . (12
4 AI—I&I&)HP ™ 8.91363291781, 7 H;)W 6.532315959. (1.2)

One important consequence of this result is that the relevant expansion parameter is a/L and thus
the expansion is only valid for a < L. By contrast, Liischer’s result holds for arbitrarily large
(indeed divergent) scattering lengths.

Higher orders in the 1/L expansion have been calculated in a number of recent papers. At
0(1/L%) comparing different calculations is no longer straightforward, and it is useful to summa-
rize the various calculations in some detail. [See also Table 1.]

2Huang and Yang report their result in terms of C = —.% /mand & = _#. Their result contains a numerical error,
reporting C = 2.37 which differs significantly from the correct value of C = 2.84. This was pointed out in Ref. [31].
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Table 1: Summary of results for the coefficient of the 1/L% term appearing in the two- and three-particle
ground state energies. Here we have introduced the geometric constants 6> = 104.45105, 3 = 2608.5851,
P53 =3613.5625 and Glog = 647(31/3 —4m). For A¢* theory we have given the result in terms of A, defined
as minus the threshold two-to-two scattering amplitude, A = 327tma. We have also rewritten this in terms of
a and r to show agreement with the expansion of Liischer’s result. [Note that a and ar both start at ¢'(1).]
In the case of two particles, a term proportional to a®/m?> arises in the expansion of Liischer’s result and the
A¢* calculation. This term is absent in the non-relativistic calculation. In the three-particle case the result
of Ref. [31] is scheme-dependent when expressed in terms of 713(t) and the present form, in particular the
value of 3, is determined in the minimal subtraction (MS) scheme. The A ¢*-theory three-particle result is
expressed in terms of the subtracted three-particle amplitude, .43 1, and the constant C3, both explained in
the text.

In Ref. [31], Beane, Detmold and Savage calculate the 1/L° contribution to the ground state us-
ing non-relativistic quantum mechanics with three-body interactions described by a delta-function
potential. The result applies for any number of particles, n. For n > 3 the coefficient of the three-
body potential, denoted 73, enters the energy shift at ¢'(1/L%).

Tan performed a closely related calculation in the same year, working through ¢'(1/L7) but
restricting attention to three particles [32]. Tan’s calculation is based on an asymptotic expansion
of the three-particle wave function at large interparticle distances. Using this expansion he defines
a three-particle hypervolume, D, which is the analog of the scattering length. It is this quantity that
enters his calculation at ¢(1/L°), in a manner similar to 173 in Ref. [31].

As a result of the two different parameters, 13 and D, comparison of the two studies for n = 3
does not provide a check on the 1/L° term. One does however find agreement for the logarithmic
volume dependence that arises at this order [see Table 1]. Going further, in Ref. [34], Detmold
and Savage pushed the calculation for n bosons through ¢(1/L”). No new parameters arise at this
order, so if D and 13 are constrained via the 1/L% term, then unambiguous comparison is possible.
For n = 3 the authors find full agreement with the earlier work by Tan.

The calculations of Refs. [31, 32, 34] all use non-relativistic techniques. One can directly
compare to a relativistic result in the two-particle case by expanding Liischer’s quantization condi-
tion order by order in 1/L. This has been done recently by the present author, together with Steve
Sharpe, in Ref. [33][see again Table 1]. We find a term scaling as a/m?, which does not appear in
the two-particle non-relativistic results [31, 34]. The expansion of Liischer’s result is performed to
check the main focus of Ref. [33]: a calculation of the energy shift for two and three particles in
relativistic A@* theory. The A ¢* theory result reproduces Liischer’s expansion in the two-particle
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case, and gives a prediction for the relativistic energy shift in the case of three particles.

The main motivation of the A¢* calculation is to provide a cross check for the relativistic
three-particle quantization condition discussed in Sec. 3 below. We find complete agreement be-
tween the perturbative prediction and the expansion of the general form [35]. In expanding the
relativistic three-particle result, the three-body interaction arises at ¢'(1/L°) in the form of a sub-
tracted, threshold three-to-three scattering amplitude, denoted .73 .

The usual three-to-three amplitude diverges at threshold due to pairwise scattering diagrams,
and only by subtracting off these divergent terms can one define a finite quantity. In the case of three
identical particles, three such diagrams contain divergences which must be removed [see Fig. 1].
The subtraction depends on a cutoff in the loop diagrams and this leads to a cutoff-dependent
constant C3 appearing in the 1/L% result. As is explained in detail in Ref. [33], all cutoff dependence
cancels between the term containing .#3 , and that containing Cs.

L = i, (XOEE - 5

Figure 1: We define a threshold scattering amplitude by subtracting the singular parts of divergent diagrams
before sending the energy to 3m. The rings denote the two-to-two scattering amplitude near threshold.
The vertical dashed lines indicate that a simple pole is used in place of the fully dressed propagator. Here
S indicates that the external legs of the subtracted diagrams are symmetrized in incoming and outgoing
momenta. See Ref. [33] for details.

We close this section by highlighting a recent result by Detmold and Flynn, presented in
Ref. [36]. In this work the authors consider matrix elements of a weak current J between n-particle
finite-volume states. Expanding the finite-volume matrix elements in powers of 1/L, the authors
give an expression in terms of constants which parametrize the current, together with the two-
particle scattering length and various geometric constants. In contrast to the ground state energies
discussed above, the L — oo limit of the current contains non-trivial physical information. In partic-
ular the authors find a ¢(L°) term which depends only on the one-body current in their expansion.
This receives finite-volume correction which start at ¢(1/L?) and the authors calculate three non-
trivial orders, 1/L?,1/L3,1/L*.

2. Non-relativistic, nonperturbative analyses

In this section we review various nonperturbative analyses that investigate the properties of
three-particle finite-volume states. We restrict attention to three recent studies, all based in non-
relativistic quantum mechanics.

We start with the work of Polejaeva and Rusetsky presented in Ref. [37]. In this extensive
study, the Fadeev equations are used to analyze the three-boson spectrum. After explaining the
equations in detail the authors show how to recast these in order to describe the system in a finite-
volume. Various technical details arise, including a proof that poles associated with the free spec-
trum cancel in the finite-volume correlator. The authors also identify the appearance of finite-
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volume effects associated with the two-particle cusp and show how these can be accommodated.
Such cusps are also an issue in the relativistic analysis described in Sec. 3 below.

The authors then give a three-particle analog of the Liischer equation by making a conjec-
ture for the finite-volume Fadeev equations and then showing that this produces the correct finite-
volume diagrammatic series. A key consequence of the result is the proof that, up to exponentially
suppressed effects, the three-particle spectrum is determined by the on-shell scattering amplitudes.
However, the resulting equations are complicated and the authors stress that future work is needed
to show how the amplitudes can be extracted.

We now turn to the analyses of Bricefio and Davoudi in Ref. [38]. In this work the authors
study the spectrum for three identical bosons by making use of an auxiliary s-wave dimer field. This
field non-perturbatively sums all two-to-two diagrams, thereby simplifying the set which must be
summed to define a finite-volume three-particle correlator. The method requires truncation of the
effective range expansion and also projection to the s-wave in the two-particle sector.

Within these approximations the authors identify a closed expression for the three-particle
finite-volume correlator. The result is a geometric series built from alternating insertions of the
finite-volume dimer with a three-body kernel. Summing this series, the authors identify a quantiza-
tion condition that depends on an intermediate three-body quantity in which finite-volume effects
persist. The authors then relate this via an integral equation to the scattering amplitude.

As a check on the formalism, the limit in which two of the three particles are bound is con-
sidered. Here the authors recover the s-wave Liischer formalism with an exponentially suppressed
correction, e~ where 7 is the binding momentum. This can be used to estimate the finite-size
effects that arise in using the Liischer formalism to extract scattering of a particle off a bound state.

We close this section by describing important recent work by Meiliner, Rios, and Rusetsky
in Ref. [39]. In this article, the authors study the finite-volume shift to a three-body bound state.
Considering a shallow bound state and working in the unitary limit (a — o) the authors find

2
AE—C’;(KLl)}/zM\ZeXp (—2;<L>+---, @.1)

V3

where the ellipsis stands for subleading terms in L, both exponentially and power suppressed. Here
¢ = —87.866 is a known numerical constant and k is the binding momentum, related to the binding
energy via Ep = k%/m. The authors describe |A|?> as the three-body analog of the asymptotic
normalization coefficient of the bound state wave function. This quantity is expected to be near
unity if long range effects dominate in the creation of the bound state. Eq. (2.1) represents an
elegant and concrete prediction and reproducing this result with the general formalism discussed
in the next section would be an interesting and non-trivial check on the latter.

3. Relativistic QFT in a finite-volume

We now turn to analysis of a three-particle system based in relativistic quantum field theory.
This work, by the present author together with Steve Sharpe, is presented in Refs. [40] and [41].

3.1 Set up

In these references we consider identical scalar particles with physical mass m contained in a
periodic cubic spatial volume with extent L. For a given total momentum in the finite-volume frame,
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Pe (21 /L)7Z?, we relate scattering observables to the discrete finite-volume energy spectrum of
three-particle states. In the derivation we drop exponentially suppressed corrections of the form
e, but keep all terms which scale as some power of 1/L. We use E to denote the three-particle
energy in the moving frame and E* the energy in the center of mass (CM) frame (E* = / E2 — P2).

In the derivation of Refs. [40, 41], particle interactions are described by a Lagrangian with a
Z, symmetry that prevents even-odd coupling, i.e. only contains even powers of the single-particle
interpolating field. This is a technical simplification and has the nice feature that we can mean-
ingfully separate the odd- and even-number states. We study the spectrum in the odd-particle sec-
tor, for CM energies which lie above the one-particle pole and below the five-particle production
threshold, m < E* < 5m.

One additional assumption is needed for the formalism to hold. We must require that the two-
particle K matrix, defined in Eq. (3.10) below, has no poles in the range of allowed two-particle
energies. Practically this means that, if the system contains a two-particle resonance with mass mg
then the kinematic range of validity is further restricted: m < E* < min[m -+ mg, Sm]. This ensures
that the maximum energy in a two-particle subsystem, E£* — m, is below the resonance pole.

Before going into detail about the finite-volume analysis, it is instructive to examine the
infinite-volume quantities which are expected to appear in the study. By analogy to Liischer’s
work together with that of the previous sections, we expect that, for three-particle states, both the
two-to-two amplitude .7, and the three-to-three amplitude .#3 should play a role.

The two-to-two amplitude, .#5, is a function of the CM energy, E;, as well as the direction
of back-to-back momenta in the CM frame. We find it convenient to separately label an incoming
direction, 4%, and an outgoing direction, 4. For fixed energy, .#, is known to be a smooth function
of these angles. This motivates a decomposition in partial waves, leading to coefficients given by
AMy(E*) for £=0,1,2,---. These are often expressed in terms of scattering phase shifts.

Naturally, .#3 depends on additional degrees of freedom. For fixed energy and momentum,
E.,P, we denote the remaining functional dependence by k,a* for the instate and p,a™ for the
outstate. In each case the three-vector (%, p) is the momentum of one of the three particles in the
finite-volume frame. The starred unit vector (4%, @"*) is the direction of back-to-back momentum
for the remaining two in their CM frame. In contrast to .45, the three-to-three scattering amplitude
is not a smooth function of these coordinates. The reason is that pairwise scattering diagrams lead
to divergences, associated with long lived intermediate states (see Fig. 2(a) as well as Refs. [42, 43,

4" coincide with the momenta

441). Such divergences appear for all E* > 3m, whenever 75,&*, D,
of classical pairwise scattering events. This leads us to define a divergence-free three-to-three
scattering amplitude, .#Zs 3 [see Fig. 2(b)]. The precise definition of .#s 3 is given in Eq. (87) of
Ref. [41]. We stress here that the difference between .#; 3 and .3 only depends on on-shell values
of .4, and that, unlike .#3, .#4;3 is a smooth function that can be decomposed in generalized

harmonics with the lowest modes dominating at low energies.

3.2 Skeleton expansion

Returning to the finite-volume system, the derivation presented in Ref. [40] is organized in
analogy to the two-particle field theoretic study of Ref. [6]. We introduce a finite-volume correlator,

C.(E,P) = /L d*xeEX'=P9) (0| To (x)5 1 (0)]0) (3.1)
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Figure 2: (a) Example of the diagrams contributing singularities to .#3. Here filled circles represent two-
to-two scattering amplitudes, connected by internal propagators which are generally off-shell. For certain
external momenta the internal propagators go on-shell, resulting in divergences in .#3. Subtracting these
gives (b) the divergence-free three-to-three amplitude, .#g3. In the subtracted term, filled circles repre-
sent on-shell two-to-two scattering amplitudes .#,. Dashed cuts stand for simple kinematic factors that
appear between adjacent .#,. These factors have the requisite poles so that the subtracted terms cancel the
singularities in .#3. The S outside the square brackets indicates that the subtracted terms are symmetrized.

whose poles in E give the finite-volume energy spectrum at fixed {L,ﬁ}. Here ¢ and o' are
odd-particle interpolating fields. We express this correlator using a skeleton expansion built from
two types of Bethe-Salpeter kernels, connected by fully dressed propagators and with endcaps
determined by the interpolating functions. This skeleton expansion is summarized in Fig. 3.

Figure 3: Skeleton expansion for the finite-volume correlator. Outermost blobs in all diagrams represent
functions of momentum that are determined by the interpolating operators ¢ and ¢'. Insertions between
these functions having four legs represent two-to-two Bethe-Salpeter kernels, iB, while insertions with six
legs represent the analogous three-to-three kernels, iB3. Lines connecting kernels and o-functions represent
fully-dressed propagators. The kernels and dressed propagators can be replaced by their infinite-volume
counterparts (in which internal loop momenta are integrated). However, the spatial momenta flowing along
the propagators that are shown explicitly, and that lie within the dashed rectangles, are summed rather than

integrated.

The choice to express Cr(E, ﬁ) as indicated is motivated by the observation that, for the kine-
matics considered, the two kernels, the fully dressed propagators and the interpolating functions all
have exponentially suppressed volume dependence. That is, the difference between the finite- and
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infinite-volume versions of these quantities scales as e "L for large L. As mentioned above, we
take these to be negligible and thus work with the infinite-volume versions of kernels, propagators,
and interpolators throughout. Thus, the only L dependence in Cj, as expressed in Fig. 3, is due to
the sums over momenta in the explicitly displayed loops.

The remaining task of the derivation is to rewrite these sums as integrals plus finite-volume
residues, to sum all integrals into infinite-volume quantities and to thus reach an expression relating
the finite-volume spectrum to infinite-volume scattering observables. In Ref. [40] the separation of
finite- and infinite-volume quantities as well as the summation into a closed expression is achieved.
However the infinite-volume three-particle quantity that appears is nonstandard due to technical
issues that arise in the derivation. The nonstandard quantity is referred to as the divergence-free
three-to-three K matrix and is denoted by % 3. In Ref. [41] this nonstandard quantity is related,
via purely infinite-volume integral equations, to the divergence-free three-to-three amplitude .Z4; 3
and to the standard amplitude .Z3.

3.3 Sketch of the two-particle derivation
Co,L(E, P) = @10 + @O0 + @O0+

Figure 4: Skeleton expansion for the two-particle correlator. Outermost blobs represent interpolators, those
in between the kernel, iB;, and all lines represent fully dressed propagators. As in the three-particle case,
the finite-volume dependence of interpolators, kernels and propagators is exponentially suppressed, and only
the L dependence due to the sums in two-particle loops is included.

To give some indication of the derivation in Ref. [40], here we describe the analogous steps
in the case of two particles. Following Ref. [6], we begin with the skeleton expansion for a two-
particle correlator with CM energy satisfying 0 < E5 < 4m [see Fig. 4]

Co(E,P) =Y oiS[iB,iS]" o7, (3.2)
n=0
where S stands for sum and we have introduced the shorthand

dK®
iB,iSiBy = L3Z / iBy(p',k)A(k)A(P —k)iBy (k, p), (3.3)

where A(k) is the fully dressed single-particle propagator, renormalized to have residue i at the
single particle pole. Here we have also introduced iB;(k, p) as the two-to-two Bethe-Salpeter
kernel with incoming momenta p and P — p and outgoing momenta k and P — k. Next define an
analogous, infinite-volume version

iByil**iB; = PP / iBy (P, k)A(k)A(P — k)iB (k, p). (3.4)

Here “PP” stands for pole prescription. This represents the fact that we have freedom to choose the
prescription used to define the integral over k.
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Finally, introducing the sum-integral-difference F' PP by iBiF PPiB, = iB,iSiB, — iB»il*YiB,,
we can rewrite Cs 1 (E, P) as follows

CoL(E,P) =Y. o(il’® +iF™) [iBy (il +iF™)]" o* (3.5)
n=0
, 1
_ 2),PP - 1'PP -PP PP
where
AP =Y 6il™ [iBil™]" 6", A=Y o[i™iB,]", 3.7)
n=0 n=0
AP =Y [iBil™]" 6", ™ =Y [iBil™)"iB,. (3.8)
n=0 n=0

To reach Eq. (3.6) from Eq. (3.5) we have simply rearranged the terms according to the number of
FPP insertions and grouped the expressions between insertions into various infinite-volume quan-
tities, defined in Eqs. (3.7, 3.8).

We now give three important observations about the result, Eq. (3.6). First note that the finite-
volume correlator, C; 7, cannot depend on the pole-prescription used to evaluate integrals over
spatial momentum, @3k, that appear on the right-hand side. We introduced this “PP” dependence
in the integral /** and the difference F'¥, and we know that it cancels in the sum of these two
quantities. This cancellation is not manifest in Eq. (3.6), but must still hold.

Second, as is discussed extensively in Refs. [6, 40], the four-vectors within iB,, which are

IPP are projected on-shell in the difference FF*. Boosting to the

summed in S and integrated in
CM frame we reach back-to-back four-vectors (1/q*2 +m?2,¢*k*) and (\/q*2 +m?2, —q*k*), where
q* is given by E* = 2/¢*? + m?. It follows that k* is the only remaining degree of freedom. This
motivates us to decompose APP APP and . #/PF in spherical harmonics, and view the second term in
Eq. (3.6) as a matrix product on the resulting index space. In particular A%’l should be viewed as a
row, F, ],D,Z,; /m and M, ;Z,; /m S matrices, and Azljn as a column. See Refs. [6, /40] for details.

Third and finally, we return to the main motivation for considering C27L(E,ﬁ), the fact that
poles in E give the finite-volume spectrum of the theory. These poles arise from the only finite-
volume dependent factor, that appearing between A}, and A}} . Various equivalent ways of ex-

pressing the divergence are possible, for example
dete [(2™F) '+ F] =0. (3.9)

This is the two-particle quantization condition due to Liischer, expressed here in a pole-prescription-
agnostic way. If we choose PP to be the ie prescription then .#"* becomes the standard scattering
amplitude, ./, while if we choose it to be the principal-value prescription, then .#"" becomes
the K matrix, .#>. Indeed it is well known that (.#;)~' = Re[(.#3)~'], and one can also show
that FP¥ = Re[F¢] and that the imaginary parts of (.#,)~! and F¢ exactly cancel. This makes the
equivalence of the two pole prescriptions manifest.

3.4 Unitary cusps and %>

In the case of the three-particle quantization condition, technical issues lead us to use a non-
standard pole prescription in the separation of sums into integrals and sum-integral differences.

10
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(a) (b) (c)
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Figure 5: (a) Sketch of .#, as a function of energy, with a cusp at E; = 2m (b) Example of a diagram in
which the sum crosses the cusp (c) %3, in contrast to .7/, is smooth at two-particle threshold.

The complication is that in the standard i€ prescription, the unitary cusp of .4, at two-particle
production threshold [see Fig. 5(a)] induces finite-volume effects. This arises in diagrams such
as that shown in Fig. 5(b). Since the total energy and momentum are fixed, the sum over the
momentum of the bottom propagator varies the energy flowing through the two-to-two amplitude.
This means the sum sweeps across the cusp, inducing a new kind of finite-volume effect.

Rather than explicitly quantify and sum all cusp finite-volume effects, in Ref. [40] we use a
new pole prescription that replaces the two-to-two scattering amplitude with a modified K matrix.
The latter has no cusp at two-particle threshold, and is indeed a smooth function for all two-particle
energies E5 [see Fig. 5(c)]. This relies on the requirement that the modified K matrix contains no
poles, discussed above. The idea to use a different pole prescription to remove the cusp was first
introduced in the non relativistic analysis Ref. [37]. This has the consequence that the three-to-three
quantity that emerges is not the standard three-to-three scattering amplitude.

To give a more complete indication of the modified pole prescription, we now completely
define the s-wave component of %

A (Esp) " = AB(E5) " —H(K)P(E3,).- (3.10)

Here .# is the standard s-wave two-to-two scattering amplitude. We have defined both .Z;° and
A5 as functions of the two-particle CM energy, E5 ;.. In the context of the three-particle quantiza-
tion condition, this quantity arises when two of the three particles scatter while the third spectates
[see Fig. 5(b)]. The subscript k on Eik indicates that the resulting two-particle energy is com-
pletely specified by the spectator momentum k together with the total energy and momentum,
E;, = \/(E — ;)2 — (P—k)2, where @y = VK> +m?.

The factors in the second term of Eq. (3.10) are defined as®

,/E*2/4 m?, (2m)® < E}*;

p(E;) = (3.11)
16”E \,/5*2/4 |, 0<E<@mp,
0, x<0;
H(k) = J(E;3/[4m%]),  J(x) =S exp(—Lexp[-L]), 0<x<1; (3.12)
1, 1 <x.

30ther definitions of H (%) are possible but we focus on a particular implementation for concreteness. See the
discussion of Ref. [40] for full details.
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To explain the nature and origin of these definitions it is useful to consider different regions of k,
leading to different values of EJ,. First suppose that E ,P and k are such that 2m < E5,. Then

—

H(k) = 1, leading to
5 (Ez )~ = M5 (E3) ™" = p(Esy) = Re[ 3 (E5)™'],  for2m <Ej, (3.13)

where we have used the result p perfectly cancels the imaginary part of .Z; (E;)*l. In other words,
for 2m < Ezk, 3 is just the standard two-particle K matrix, related to the scattering phase shift

via
167E3
H(Ey ) = ~tand(q;), for2m < Ej,, (3.14)
k) q k)

i
where we have introduced g; defined by E3 , = 2, [q;* +m?.

The nonstandard nature of %3’ (E3 ;) arises from its definition for 0 < E3; < 2m. In this region
M5 is defined via analytic continuation and p is continued as indicated in Eq. (3.11). Indeed,
if the function H (75) were set to one in Eq. (3.10), then the right-hand side would represent the
standard analytic continuation leading to subthreshold %5 (E; , ). The function H (k) modifies this
by smoothly “turning off” the p term as E5 varies from 2m to 0. In other words, the definition
smoothly interpolates from the standard K matrix at two-particle threshold to the standard scattering
amplitude at E5, = 0.

ItH (%) were not included, then two problems would arise in the three-particle quantization
condition. The first is related to the fact that p appears in F3, the three-particle analog of F*P
appearing in the quantization condition Eq. (3.15) below. As in the two-particle case, the three-
particle quantization is expressed as the determinant of a matrix, and is only useful if this matrix
can be truncated to a finite-dimensional subspace. The growth of p below threshold invalidates
this truncation unless H (75) is included. The second issue arises when one considers higher partial
waves, beyond the s-wave defined above. To do so, one needs a subthreshold definition of a*,
the direction of back-to-back momentum in the two-particle CM frame. This definition, given in

Ref. [40], is only valid for E5; > 0, and the function H (k) ensures that it is only needed in this
regime.

3.5 Three-particle quantization condition

The definition of %’ in the previous section can also be interpreted as the definition of a pole
prescription. In particular, to evaluate the spatial-momentum integrals for two-particle loops in
>, one should use a principal-value prescription for 2m < E3, and for 0 < E5;, < 2m one should

—

continue below threshold using H(k)p(E5 ). In Refs. [40, 41] we denote this as the modified
principal value, or PV, prescription. This removes two-particle cusps while ensuring that we do
not encounter arbitrarily large sub-threshold contributions from J.

Using this definition, we can separate all sums in Cy, into integrals and sum-integral differences
and sum the decomposition into a closed form, analogous to Eq. (3.6) above. Identifying the poles
in this expression leads to the three-particle quantization condition

dety , [ A3 +F5] =0. (3.15)

12
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Here s 3 is an infinite-volume three particle quantity which is nonstandard due to the PV pole
prescription. We build up the precise definition diagram by diagram in Ref. [40] and a more useful
definition is given in Ref. [41] where the quantity is related to .#3. F3, by contrast, depends on L
and also on the two-to-two K matrix, /. It is defined in Eq. (19) of Ref. [40].

As one might expect, the index space of the matrices in Eq. (3.15) differs from the spherical
harmonic indices that arise in the two-particle case. In particular, as we have described above, with
fixed total energy and momentum E, P, an on-shell three-particle state can be parametrized by the
moving-frame momentum of one of the particles, k, together with the direction of back-to-back
momentum in the CM frame of the other two, @*. In the quantization condition, % is constrained
to satisfy ke (2m/L)7Z3. Combining this with a decomposition of @* in spherical harmonics gives
a discrete set, %,E,m. The quantities #gr3 and F3 are viewed as matrices on this index space,
Le. Har3 = a3 0m kim-

The matrix index X is truncated due to the cutoff function H (75) Thus, as in the two parti-
cle result, the matrices entering Eq. (3.15) truncate to a finite dimensional space as long as one
truncates %> (inside of F3) and JZj3 to be finite dimensional in ¢ space. The most extreme
truncation possible is to suppose that JZgr3 depends only on CM total energy E*. This gives
a3 (E*) = —1/Fi*(E,P,L). In this truncation, which is well motivated near threshold where di-
rectional dependence is suppressed, one can determine a value of ¢ 3(E*) for each finite-volume
energy level. To do so one must determine F3iS°, which is defined in Eq. (39) of Ref. [40]. This
depends on .%; at two-particle energies ranging up to E* —m.

3.6 Relating % 3 to .#y3 and .3
iMop = QI+ OO + 1OE0S0r + -

Figure 6: Alternative finite-volume two-particle correlator. This is reached by amputating the ¢ and o'
endcaps and then discarding the disconnected diagram from C, ;, in Fig. 4.

The precise definition of g 3 is quite complicated and our use of this non-standard infinite-
volume quantity is the central drawback of Ref. [40]. This problem is resolved in Ref. [41] where
we give an explicit integral equation relating .#g; 3 to the standard three-to-three scattering ampli-
tude, .#3. To give an idea of how the relation is derived it is instructive to return to the two-particle
case. We begin by introducing a modification of the two-particle finite-volume correlator [see
Fig. 6]

. o = R . PP 1
iy = n;) [iB2iS]"iBy = il TP

(3.16)

> 1 is given by choosing a specific set of interpolators in C>; and also discarding disconnected
diagrams. These steps do not affect the predicted spectrum and so .#5 ; may be used in place of
(> 1 to derive Eq. (3.9).

Now note that, if we can construct an infinite-volume limit such that iS goes over to i/ i€ then in
this limit i.# ; will become the standard infinite-volume two-to-two scattering amplitude. As we
describe in Ref. [40], such a limit can be taken as follows: (1) In all summands shift all singularities
into the complex plane by an amount i€ (2) Send L — oo to convert the sums over the now smooth
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functions into integrals (3) Send € — 0" after integration in the manner that is standard for the i€
pole prescription. We denote this procedure with the shorthand lim; . |; and deduce

1

ity = lim | itry =i (3.17)
Lo e 7

On the left-hand side is the standard two-to-two scattering amplitude and on the right-hand side
is the two-to-two quantity defined with some other pole prescription. Combining Eqgs. (3.9) and
(3.17), we have a two step procedure: first use the finite-volume spectrum to determine .#""
and then use the infinite-volume conversion to deduce .#>. In the two-particle case this is quite
unnecessary because the two steps can be trivially combined into the standard Liischer expression.

In the three-particle case the relations are significantly more complicated and the separation
into two parts is more difficult to remove. In Ref. [41] we carefully repeat the argument above
in the three-particle sector. This requires first defining .#3 1, a modified finite-volume correlator
that becomes the three-to-three amplitude in the limit lim; . |;e. Next we use the results for Cy, to
express .73 in terms of %3 as well as %5 and various finite-volume functions. Finally we take

the infinite-volume limit to reach an integral equation relating %3 to .#4¢ 3 and to .#3.

4. Conclusion

A variety of techniques have been used to relate the three-particle finite-volume spectrum with
scattering observables. In the case of 1/L expansions, multiple results are available and, while
there are no inconsistencies in the three-particle sector, a check of the 1/L% term is only possible if
the various three-particle interactions can be related independently. Similarly for non-perturbative,
non-relativistic studies: results are available which prove certain key properties of the spectrum,
and checks between the various approaches would be instructive.

Finally, the relativistic study of the previous section should in principal reproduce all of the
results that precede it. The 1/L expansion is nearly complete and further checks, including the
three-particle binding energy, are underway. We also aim in future work to demonstrate the practi-
cal utility of this result in extracting observables from the spectrum. This will require extending the
formalism to accommodate all possible three-hadron states, in particular including non-identical,
non-degenerate particles, two-particle resonances, two-to-three couplings and spin.

[ thank Steve Sharpe for many useful discussions and for helpful comments on the manuscript.
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