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Spin is a welcome complication in the study of partonic structure that has led to new insights,
even if theoretically and experimentally not all dust has settled, in particular on quark flavor de-
pendence and gluon spin. At the same time it opened new questions on angular momentum and
effects of transverse structure. In this talk the focus is on the role of the transverse momenta of
partons. Like for collinear parton distribution functions (PDFs), we are also in the case of trans-
verse momentum dependent (TMD) PDFs, talking about forward matrix elements. TMD PDFs
(or in short TMDs) extend collinear PDFs with only spin-spin correlations to PDFs that include
spin-momentum correlations, including also time-reversal-odd (T-odd) correlations, relevant for
the description of single spin asymmetries. In this way TMDs open up new ways of studying the
spin structure. Their operator structure within QCD, however, is more complex leading to various
ways of breaking of universality.
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1. Introduction

Parton densities are a natural way of dealing with the notion of cross sections as an incoher-
ent sum of scattering off the partons, quarks and gluons, in a hadron. They are not needed in
electroweak cross sections for leptons where the targets and produced particles are the degrees of
freedom of the lagrangian describing its interactions. Then one just needs the wave functions in-
cluding spinors or polarization vectors to account for external states, plane waves including their
possible polarization. At higher orders the calculations involves of course the whole regularization
and renormalization procedures, but these can be handled in a renormalizable theory.

The wave functions and spinors or polarizations of partons actually show up in the single par-
ticle matrix elements of the corresponding fields. For a proper treatment of parton densities, one
needs to consider the matrix elements of the fields between hadronic states, e.g. a single hadronic
target in inclusive deep inelastic scattering (DIS), in the cross section leading to forward matrix ele-
ments of combinations of field operators. For local operator combinations this one can still employ
the full field theoretical machinery. Such matrix elements, however, are merely moments of parton
densities. Helped by the kinematics in a high-energy process one can make a twist expansion by
identifying the leading local operator combinations, which then can through a Mellin transform be
identified with collinear parton distribution functions (collinear PDF’s). The renormalization dif-
fers for each of the local (composite) operators involving for each of them anomalous dimensions,
leading to multiplicative renormalization factors for the moments and a convolution of PDFs with
splitting functions to account for scale dependence of the matrix elements and the parton densities.

This all works amazingly well for QCD, where the collinearity shows up in data, that exhibit
jet structure linked to ’target remnants’ and ’scattered partons’. There is a natural order of scales.
Starting with the high energy scale of the process, say

√
s and a fraction of it linked to the still

high energy scale of the partonic process, say Q to the transverse momenta of the order of a GeV
or less. Intermediate are larger values of the transverse momenta but viewed as part of the partonic
probabilities these fall like αs(|p2

T |)/|p2
T |.

Of course high energy kinematics is an essential ingredient in this. The hadronic mass becomes
irrelevant and a given hadron is struck at an instant (light-front time). If P1 ·P2→∞ one has s→∞.
Any momentum p = x1 P1 + x2 P2 + pT with pT ·P1 = pT ·P2 = 0 and hadronic size p2 ∼ p2

T ∼M2

naturally must have x1 x2 ∼ M2/s splitting into three types, x1 finite and x2 ∼ M2/s→ 0 (p is
momentum of a parton in 1), x1 ∼ M2/s→ 0 and x2 finite (p is momentum of parton in 2), or
x1 ∼ x2 ∼M/

√
s→ 0 (soft). For a parton in hadron 1, one can then has a Sudakov decomposition

p = x1 P1 + pT +
1
2
(p2− p2

T )n,

where n = P2/P1·P2. The approximate light-like vector n satisfies P1·n = 1 and x1 = p·n. If another
hadronic vector K for which P1·K ∼ s is used to fix n, the change in x1 is of order M2/s. The
intrinsic transverse momentum pT will depend on the choice of n. Considering a process like the
Drell-Yan process, two partons of different hadrons combine into a hard final state momentum with
q2 = Q2 (e.g. a lepton pair), the measurable quantity

q =
q·P2

P1·P2
P1 +

q·P1

P1·P2
P2 +qT ,
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includes the experimentally accessible non-collinearity qT . The rest identifies the partonic momen-
tum fractions (up to mass corrections) with scaling variables,

x1 =
q·P2

P1·P2
≈ Q2

2P1·q
and x2 =

q·P1

P1·P2
≈ Q2

2P2·q
.

The basic subprocess is parton(p1) + parton (p2)→ γ∗(q). The actual sensitivity to the transverse
momentum shows up in the transverse momentum of the lepton pair. If p1 = x1P1 + p1T and
p2 = x2P2 + p2T one has qT = p1T + p2T at leading order linking the partonic momenta to the
observed non-collinearity qT . The cross section in terms of the transverse momenta is a convolution
in momentum space or a product in impact parameter space, for which we hope to write at leading
order (in an expansion in M2/s)

dσ ∝

∫
d2 p1T d2 p2T δ

2(p1T + p2T −qT ) . . .Φ(x1, p1T ; . . .)Φ(x2, p2T ; . . .) . . .

∝

∫
d2bT exp(iqT ·bT ) . . .Φ(x1;bT ; . . .)Φ(x2;bT ; . . .) . . . . (1.1)

Besides hard amplitudes and kinematic factors the dots (in particular those in the arguments of the
correlators) also include regulators and corresponding scale dependence to handle large pT UV
behavior as well as rapidity divergences [1]. Effects of intrinsic transverse momenta of partons
are best visible in (partially) polarised processes. In that case one has polarization vectors S for
hadrons (parametrizing the spin density matrix) or measurable polarization vectors depending on
final state distributions of decay products, e.g. in ρ → ππ or in Λ→ πN. These spin vectors can
fix directions including in particular the transverse ones. The spin vector can be parametrized as
M S= SL P+M ST −M2 SL n, which obeys S2 =−S2

L+S2
T and P·S= 0. Therefore the polarization is

not correlated with the collinear component of the momentum. Collinear quark densities, indeed,
just come as spin-spin densities, unpolarized densities ( f q

1 (x) or q(x)) in an unpolarized proton,
longitudinally polarized (chiral) densities (gq

1(x) or ∆q(x)) in longitudinally polarized proton and
transversely polarized densities (hq

1(x) or δq(x)) in a transversely polarized proton. Similarly gluon
densities are just unpolarized gluon densities ( f g

1 (x) or g(x)) in an unpolarized nucleon or circularly
polarized gluon densities (gg

1(x) or ∆g(x)) in a longitudinally polarized nucleon.

2. TMD correlators and distribution functions

The quark and gluon TMD correlators in terms of matrix elements of quark fields [2, 3] in-
cluding the Wilson lines U needed for color gauge invariance of the TMD case are given by

Φ
[U ]
i j (x, pT ;n) =

∫ d ξ ·Pd2ξT

(2π)3 eip·ξ 〈P,S|ψ j(0)U[0,ξ ]ψi(ξ )|P,S〉
∣∣
LF , (2.1)

2xΓ
[U,U ′]µν(x, pT ;n) =

∫ d ξ ·Pd2ξT

(2π)3 eip·ξ 〈P,S|Fnµ(0)U[0,ξ ] F
nν(ξ )U ′[ξ ,0] |P,S〉

∣∣
LF (2.2)

(color summation or color tracing implicit), where the Sudakov decomposition for the momentum
pµ of the produced quark or gluon is used. The non-locality in the integration is limited to the
lightfront, ξ ·n = 0, indicated with LF. The gauge links U[0,ξ ] are path ordered exponentials needed
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to make the correlator gauge invariant [4, 5]. Depending on the process under consideration differ-
ent gauge links will appear [6, 7]. For the quark correlator the gauge link bridges the non-locality,
which in the case of TMDs involves also transverse separation. The simplest ones are the future-
and past-pointing staple links U [±]

[0,ξ ] (or just [±]) that just connect the points 0 and ξ via lightcone

plus or minus infinity, U [±]
[0,ξ ] = U [n]

[0,±∞]U
T
[0T ,ξT ]

U [n]
[±∞,ξ ]

. We use these as our basic building blocks.
For gluons TMDs the most general structure involves two gauge links (triplet representation), de-
noted as [U,U ′], connecting the positions 0 and ξ in different ways. The simplest combinations
allowed for [U,U ′] are [+,+†], [−,−†], [+,−†] and [−,+†]. More complicated possibilities, e.g.
with additional (traced) Wilson loops of the form U [�] =U [+]

[0,ξ ]U
[−]
[ξ ,0] = U [+]

[0,ξ ]U
[−]†
[0,ξ ] or its conjugate

are allowed as well. A list with all type of contributions can be found in Ref. [8, 9]. If U =U ′ one
can also use a single gauge link in the octet representation.

Since the above correlator cannot be calculated from first principles, an expansion in terms of
TMD PDFs is used, which at the level of leading twist contributions is given by [10, 11, 12, 13]

Φ
[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T )+g[U ]
1s (x, p2

T )+ ih⊥[U ]
1 (x, p2

T )
/pT
M

+h[U ]
1 (x, p2

T )γ5 /ST +h⊥[U ]
1T (x, p2

T )
pT αβ S{αT γ

β}
T γ5

2M2

}
/P
2
. (2.3)

2xΓ
µν [U ](x,pT) = −gµν

T f g[U ]
1 (x,p2

T)+gµν

T
ε

pT ST
T
M

f⊥g[U ]
1T (x,p2

T)

+ iεµν

T gg[U ]
1s (x,pT)+

(
pµ

T pν
T

M2 −gµν

T
p2

T

2M2

)
h⊥g[U ]

1 (x,p2
T)

− ε
pT {µ
T pν}

T
2M2 h⊥g[U ]

1s (x,pT)−
ε

pT {µ
T Sν}

T +ε
ST {µ
T pν}

T
4M

hg[U ]
1T (x,p2

T). (2.4)

We have used that Sµ = SLPµ + Sµ

T + M2 SLnµ . For function like g[U ]
1s and h⊥[U ]

1s the shorthand
notation

g[U ]
1s (x, pT) = SLg[U ]

1L (x, p2
T)−

pT ·ST

M
g[U ]

1T (x, p2
T) (2.5)

is used. The gauge link dependence in this parametrization is contained in the TMDs. Note that for
quarks f⊥1T and h⊥1 are T-odd, while for gluons f⊥g

1T , hg
1T , h⊥g

1L and h⊥g
1T are T-odd.

Even if any gauge link defines a gauge invariant correlator, the relevant gauge links to be used
in a given process just follows from a correct resummation of all diagrams including the exchange
of any number of An gluons between the hadronic parts and the hard part, i.e. gluons with their
polarization along the hadronic momentum. They nicely sum to the path-ordered exponential. For
quark distributions in semi-inclusive deep inelastic scattering they resum into a future-pointing
gauge link, in the Drell-Yan process they resum into a past-pointing gauge link, which is directly
linked to the color flow in these processes.

3. Operator analysis

In the situation of collinear PDFs (integrated over transverse momenta), the non-locality is
restricted to the lightcone, ξ ·n = ξT = 0 (LC) and the staple links reduce to straight-line Wil-
son lines. The correlators then involve the non-local operator combinations ψ(0)U [n]

[0,ξ ]ψ(ξ )|LC or

4
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Fnµ(0)U [n]
[0,ξ ]F

nν(ξ )U [n]
[ξ ,0]|LC, expanded in terms of leading twist operators ψ(0)Dn . . .Dnψ(0) and

Tr[FnµDn . . .DnFnν(0)Dn . . .Dn] operators. Although gauge links are part of the matrix elements,
they do not cause any non-universality or process dependence. In order to find the local operators
for TMDs we integrate over transverse momentum including explicit transverse momentum vec-
tors. Each transverse momentum pα

T becomes a derivative giving transverse indices. The simplest
of these transverse moments are∫

d2 pT Φ
[U ](x, pT) = Φ̃(x), (3.1)∫

d2 pT pα
T Φ

[U ](x, pT) = Φ̃
α

∂
(x)+C[U ]

G,c Φ̃
α
G,c(x), (3.2)∫

d2 pT pα1
T pα2

T Φ
[U ](x, pT) = Φ̃

α1α2
∂∂

(x)+C[U ]
G,c Φ̃

α1α2
{∂G},c(x)+C[U ]

GG,c Φ̃
α1α2
GG,c(x), (3.3)

and similarly results for Γ[U,U ′](x, pT ). These integrated results will require standard UV regu-
larization and corresponding scale dependence, while one also may need to consider appropriate
combinations, e.g. subtraction of traces, to get finite results. Furthermore it can often be more
appropriate to work with Bessel moments [14]. The correlators appearing in Eq. 3.3 are of the
form

Φ̃
[U ]

Ô,i j
(x, pT ) =

∫ d ξ ·Pd2ξT

(2π)3 eip·ξ 〈P,S|ψ j(0)U[0,ξ ]Ô(ξ )ψi(ξ )|P,S〉
∣∣∣
LF
, (3.4)

where the Ô(ξ ) operators are rank two combinations of i∂T (ξ ) = iDα
T (ξ )−Aα

T (ξ ) and Gα(ξ ),
defined in a color gauge invariant way (thus including GLs),

Aα
T (ξ ) =

1
2

∫
∞

−∞

dη ·P ε(ξ ·P−η ·P)U [n]
[ξ ,η ]

Fnα(η)U [n]
[η ,ξ ]

, (3.5)

Gα(ξ ) =
1
2

∫
∞

−∞

dη ·P U [n]
[ξ ,η ]

Fnα(η)U [n]
[η ,ξ ]

, (3.6)

with ε(ζ ) being the sign function. Note that Gα(ξ ) = Gα(ξT ) does not depend on ξ ·P, implying in
momentum space p ·n = p+ = 0, hence the name gluonic pole matrix elements [15, 16, 17, 18, 19,
20]. In Eq. 3.3 one encounters symmetrized products of these operators indicated with subscripts
{∂G}, etc. Moreover the color summation often introduces multiple possibilities, e.g. for a gluonic
pole matrix element in combination with two gluon fields there are two possibilities, Tr(F [G,F ])

(c = 1) and Tr(F{G,F}) (c = 2) that have to be summed over. The final important ingredient in
Eq. 3.3 are the gluonic pole factors, calculable factors depending on the number of gluonic poles in
the operator and the path of the gauge link U . Most well-known are the single gluonic pole factors
C[±]

G =±1.
The operators Φ̃Ô(x) can be considered as zero momentum limits or integrations over of multi-

parton correlators such as three-parton quark-gluon-quark correlators ΦD(x,y) with an operator
structure 〈ψ(0)Dα(η)ψ(ξ )〉, non-local along the lightcone, and similarly ΦF(x,y) or gluon-gluon-
gluon correlators like ΓF(x,y). These multi-parton distributions play a role in higher twist contri-
butions to the cross sections and can be used to establish relations, they appear in sum rules, they
exhibit symmetries between correlators involving partons and anti-partons, etc. Several contribu-
tions on these topics are presented at this conference.

5
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In many cases the multi-parton distributions are also driving the large pT -behavior of the
TMDs. For the collinear PDFs extended to the corresponding TMDs, this is the αs/p2

T behavior of
f1(x, p2

T ), in essence the evolution equations. In this way multi-parton distributions are driving the
large pT behavior of many of the TMDs [21, 22], in particular the T-odd ones. Note, however, that
the large pT behavor of TMDs without a collinear counterpart may be driven by collinear functions,
such as f g

1 driving the linearly polarized gluon distribution h⊥g
1 [23, 24] or the transversity h1

driving the Pretzelocity function h⊥1T [21].

4. Universal TMDs

Taking transverse derivatives gives the coefficients in the expansion in transverse momenta,
for which we like to use traceless irreducible tensors pα1α2...

T of a fixed rank, which describe in
essence the azimuthal dependence. We would like to use the moments to identify the coefficients
in the azimuthal expansion

Φ(x, pT ) = Φ̃(x, p2
T )+

pTi

M
Φ̃

i(x, p2
T )+

pTi j

M2 Φ̃
i j(x, p2

T )+ . . . . (4.1)

If in the higher moments just operators of the type Φ̃
α1...αn
∂ ...∂ would appear, it would be easy to find

the operator expressions for f1(x, p2
T ). It would correspond with the rank zero operator Φ̃(x, p2

T )

including all ∂ ·∂ traces that are subtracted in the higher rank operators and account for the p2
T

dependence. Such is actually the case for fragmentation functions where the gluonic pole matrix
elements (after integration over transverse momenta) vanish.

For the distribution correlators, however, this procedure does not lead to a unique correlator
linked to a particular function because gluonic pole matrix elements do not vanish, in particular also
terms including G·G traces. For instance even the unpolarized quark (or gluon) TMD distributions
f1(x, p2

T ) remain gaugelink-dependent [25] because of this. Only the ∂ ·∂ traces are taken care
of in the p2

T -dependence of the function, but gluonic pole trace operators Φ̃G·G,c(x, p2
T ) need to

be included and require introduction of functions δ f [GG,c]
1 (x, p2

T ). These functions have to satisfy∫
d2 pT p2

T δ f [GG,c]
1 (x, p2

T ) = 0, so they cause gauge-link dependent modulations,

f [U ]
1 (x, p2

T ) = f1(x, p2
T )+ ∑

c=1,2
C[U ]

GG,c δ f [GG,c]
1 (x, p2

T )+ . . . , (4.2)

of which only the first term survives in the collinear, pT -integrated, situation. It leads to process
dependence in the p2

T dependence, e.g. in the pT -width. In this case there are two possible color
contractions in the summation over c. There is no term with a single gluonic pole matrix element
because of the time reversal nature of the gluonic poles being odd. The time reversal nature,
however, makes T-odd functions gaugelink-dependent already from the start, such as for the Sivers
function,

f⊥[U ]
1T (x, p2

T ) =C[U ]
G f⊥[G]

1T (x, p2
T )+ . . . . (4.3)

For the Pretzelocity distribution there are three different operator structures contributing to the
gauge link dependence,

h⊥[U ]
1T (x, p2

T ) = h⊥[∂∂ ]
1T (x, p2

T )+ ∑
c=1,2

C[U ]
GG,c h⊥[GG,c]

1T (x, p2
T )+ . . . . (4.4)

6
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Thus measurements of Pretzelocity effects are gaugelink-dependent, and hence process dependent,
even if the observable is a T-even function. In any given process a particular combination of the
universal functions on the righthandside appears. These universal functions are here labeled by
a combination of ∂ and G identifying the operator structure and if needed an index c if multiple
color configurations have to be considered. In all of the above expressions, one has to be aware
of additional modulations that come from operators with even more (traced) gluonic pole terms.
To study their possible importance lattice studies using different gaugelink structures would be
useful [29, 30].

Turning to the gluon distributions, one also encounters gaugelink-dependence already for the
unpolarized TMD distributions,

f g[U,U ′]
1 (x, p2

T ) = f g
1 (x, p2

T )+
4

∑
c=1

C[U,U ′]
GG,c δ f g[GG,c]

1 (x, p2
T )+ . . . , (4.5)

including four different color configurations in the p2
T modulation. Like for the Pretzelocity, one

has for a T-even situation such as that of linearly polarized gluons in an unpolarized hadron also
multiple universal functions,

h⊥g[U,U ′]
1 (x, p2

T ) = h⊥g[∂∂ ]
1 (x, p2

T )+
4

∑
c=1

C[U,U ′]
GG,c h⊥g[U,U ′]

1 (x, p2
T )+ . . . . (4.6)

The above examples illustrate our ongoing efforts [9] to establish a universal set of TMD functions.
As a final note, I want to stress that in situations where two (or more) TMDs with nonzero rank are
involved, one must account for possible additional color factors in the basic expressions that are in
DY-like processes for instance different from the 1/Nc or 1/(N2

c −1) factors for qq or gg initiated
processes [26, 27].

5. Conclusions

TMDs encode many features that can be linked to the partonic structure of hadrons and that
can in principle be accessed at leading order provided that one picks the right variable, usually
involving azimuthal asymmetries in polarized processes. Such efforts are under investigation in the
experimental programs at RHIC/Brookhaven, JLab, BELLE, COMPASS/CERN, JPARC, BESIII
or BaBar (see contributions at this workshop). In parallel, theoretical developments are underway
to understand the data and the way these have to be incorporated into our view of the partonic
structure of hadrons. This is a nontrivial enterprise since there are many ideas, but also many
technical hurdles to take. In my talk I have focussed for a large part of efforts in establishing a
universal set, connected to specific operators, for TMDs that one can then can try to work with [28].
I have not addressed the extensive efforts that are ongoing to understand the scale dependence and
the matching that is needed to simultaneously understand the behavior at low and high qT values.
Furthermore, links exist with work to understand low-x behavior, use of more involved hadronic
observables like di-hadron fragmentation functions or double-parton distributions to understand
multi-parton processes, where again we refer to other contributions at this conference.
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