MEASUREMENT OF ANTINEUTRINO OSCILLATION WITH THE FULL DETECTOR CONFIGURATION AT DAYA BAY

THE DAYA BAY EXPERIMENT

Eight antineutrino detectors (ADs) located in three underground experimental halls (EHs). Four ADs positioned in two near halls at short distance from six nuclear reactor cores, and four ADs located in the far hall, shielded by 860 mwe overburden.

Each EH hosts **functionally identical** ADs inside a muon detector system (water Cerenkov + RPC).

Each AD consists of 3 nested vessels:

- **filled** with 0.1% **Gd-doped liquid scintillator**
- filled with undoped scintillator (LS)
- filled with mineral oil (MO)

192 8" PMTs are radially positioned in the mineral oil region

SIGNAL & BACKGROUNDS								
Inverse Beta Decay Neutron Capture	$\rightarrow + Gd$	Prompt Energy $+ \ Gd \xrightarrow{ au pprox 28 \ \mu s} Gd^* o Gd + n\gamma$ Delayed Energy						
Selection Criteria: 0.7 MeV < E_P < 12 MeV 6 MeV < E_D < 12 MeV 1 μ s < (t_D - t_P) < 200 μ s Θ Veto to suppress cosmogenic products in case of activity in the muon system								
							Far Hal	II (EH3)
Long the second	- t d energy (MeV		Events / 0.25 MeV			10^4 10^3 10^2 10 2	4 6 8 10 Prompt ener	dentals He $n^{-13}C$ $(n)^{16}O$ neutrons 12 12 rgy [MeV]
	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
IBD candidates	304459	309354	287098	190046	40956	41203	40677	27419
DAQ live time(days)	565.436	565.436	568.03	378.407	562.451	562.451	562.451	372.685
$arepsilon_{m \mu}$	0.8248	0.8218	0.8575	0.8577	0.9811	0.9811	0.9808	0.9811
$arepsilon_m$	0.9744	0.9748	0.9758	0.9756	0.9756	0.9754	0.9751	0.9758
Accidentals(per day)	8.92 ± 0.09	8.94 ± 0.09	6.76 ± 0.07	6.86 ± 0.07	1.70 ± 0.02	1.59 ± 0.02	1.57 ± 0.02	1.26 ± 0.01
Fast neutron(per AD per day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01			
$L_1/He(\text{per AD per day})$	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14			
Am- C correlated b-AD(per day)	0.27 ± 0.12	0.25 ± 0.11 0.21 \pm 0.10	0.27 ± 0.12	∩ <u>୨୨</u> ⊥ ∩ 10	0.22 ± 0.10	0.21 ± 0.10	0.21 ± 0.09	0.07 ± 0.02
Ann-C correlated δ -AD(per day) ¹³ C(α , n) ¹⁶ O(per day)	0.20 ± 0.09	0.21 ± 0.10 0.07 \pm 0.04	0.10 ± 0.08	0.22 ± 0.10 0.07 \pm 0.04	0.00 ± 0.03	0.04 ± 0.02 0.05 \pm 0.02	0.04 ± 0.02 0.05 \pm 0.02	0.07 ± 0.03 0.05 ± 0.03
IBD rate(ner dav)	657.18 ± 1.94	670.14 ± 1.04	59478 ± 146	590.81 ± 1.66	73.90 ± 0.03	$74\ 49 \pm 0.03$	73.58 ± 0.40	0.00 ± 0.03 75.15 ± 0.49

MARCO GRASSI, IHEP, CAS, BEIJING (on behalf of the DAYA BAY collaboration) 🔌 mgrassi@ihep.ac.cn

ENERGY SCALE CALIBRATION

Constrain the energy scale difference among 8ADs

Energy scale calibrated using Am-C neutron source at the detector center (n-Gd capture)

Time variation and position dependence corrected using 2.5 MeV gammas from ⁶⁰Co sources

Multiple sources with different spatial distros used to validated **uncertainty** on energy scale

- * ⁶⁸Ge gammas at detector center
- Unif. distributed n from IBD and muon spallation (both capturing on H and Gd)
- $\ast \alpha$ particles from Po and Rn decays in Gd-LS region
- Intrinsic ⁴⁰K (1.46 MeV gamma) and ²⁰⁸TI within the Gd-LS region

The uncorrelated relative uncertainty of the energy scale is < 0.2%

Non-Linear Energy Response

Non-linear (NL) energy response originated from:

- Particle-dependent NL light yield of LS
- charge-dependent NL in the PMT readout electronics

Semi-empirical model accounting for non-linear response contains 4 parameters: ✤ Birks' constant

- Cherenkov contribution to total light yield
- Amplitude and scale of exponential
- describing NL electronics response

Model parameter values obtained from unconstrained χ^2 fit to calibration datasets:

- I2 gamma lines from both deployed and naturally occurring sources
- * continuous β decay spectrum of ¹²B produced by muon spallation inside the Gd-LS volume

The nominal positron response is derived from the best fit parameters

both at the level of 10%

$$f_{\text{scintillator}} = \frac{E_{\text{vis}}}{E_{\text{true}}} \propto f_q(E_{\text{true}}, k_B) + k_C \cdot f_C(E_{\text{true}})$$

 $f_{\text{electronics}} = \frac{E_{\text{rec}}}{E_{\text{vis}}} \propto 1 - \alpha \cdot \exp(-E_{\text{vis}}/\tau)$

Recent precise measurements of the IBD positron energy spectrum disagree with models of reactor v emission. To measure the oscillation parameters we use a technique for predicting the signal in the far hall based on measurements obtained in the near halls, with minimal dependence on the on models of the reactor antineutrinos.

$$\chi^{2} = \sum_{i,j} (N_{j}^{\mathrm{f}} - w_{j} \cdot N_{j}^{\mathrm{n}}) (V^{-1})_{ij} (N_{i}^{\mathrm{f}} - w_{i} \cdot N_{i}^{\mathrm{n}})$$
$$w_{i}^{\mathrm{SR}} = \frac{N_{i}^{\mathrm{f}}}{N_{i}^{\mathrm{n}}} = \left(\frac{T^{\mathrm{f}}}{T^{\mathrm{n}}}\right) \left(\frac{\epsilon^{\mathrm{f}}}{\epsilon^{\mathrm{n}}}\right) \left(\frac{L^{\mathrm{n}}}{L^{\mathrm{f}}}\right)^{2} \left(\frac{P_{i}^{\mathrm{f}}}{P_{i}^{\mathrm{n}}}\right) \left(\frac{\phi}{\phi}\right)$$

For multiple reactor cores, the weights need to be modified, and the cancellation of the antineutrino flux is no longer exact. However the impact of the uncertainty in antineutrino flux on the oscillation parameters is $\leq 0.1\%$

More information about this analysis is available at: arXiv: 1505.03456 (accepted by PRL)

N: number of events after bkg sub. w: weight accounting for differences

- between near and far meas.
- T: number of target protons
- ٤ efficiency
- L: distance reactor-detector
- P: oscillation probability
- Φ: reactor flux
- V: covariance matrix (stat + sys)

Results

The mass splitting result is consistent with and of comparable precision to measurements

