
P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI – General-Purpose OCCI Client Library in
Java

Michal Kimle, Boris Parák, Zdeněk Šustr∗

CESNET z. s. p. o.
Zikova 4, 160 00, Praha 6, Czech Republic
E-mail: kimle.michal@gmail.com, boris.parak@cesnet.cz,
zdenek.sustr@cesnet.cz

The Open Cloud Computing Interface (OCCI) standard by OGF has become widely adopted
in various cloud environments, such as the EGI Federated Cloud. It is currently supported by
mainstream open source cloud management frameworks, e.g., OpenStack (through OCCI-OS)
or OpenNebula (rOCCI) as well as others, less wide-spread ones. It is likewise supported by
many workflow and submission tools used by user communities – VMDIRAC, JSAGA or SixSq.
SlipStream to name but a few. OCCI is, however, found somewhat lacking in the availability of
general-purpose clients supporting the standard. Only recently, its use was enabled only in the
Ruby programming language through the rOCCI Framework, and command-line/scripting use
was facilitated by the rOCCI-cli client. Naturally, there has been long-standing demand for OCCI
support in other programming languages, primarily in Java. It has now been answered by the
introduction of jOCCI – a native Java library implementing the OCCI class structure, rendering
and transport specifications, currently in accordance with the OCCI v. 1.1 specification. Provided
by the same product team already producing the rOCCI framework, it is more than “just another
feature in the cloudscape.” Rather than a simple translation of the client part of rOCCI, it is a
brand new product – a choice that has been made not only to make it a truly native Java library,
but also to introduce additional, independent, client to validate the generic functionality of existing
OCCI server applications. This work describes the new library and compares it to rOCCI in terms
of design and interoperability when used against other server-side OCCI implementations. It
also discusses the relative merits of implementing the client library as a fresh product, relatively
separate from rOCCI, rather than just providing Java bindings for the client side of the rOCCI
Framework. Finally, the future of rOCCI and jOCCI is briefly discussed in view of the emerging
OCCI v. 1.2 specification.

International Symposium on Grids and Clouds (ISGC) 2015
15 – 20 March, 2015
Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:kimle.michal@gmail.com
mailto:boris.parak@cesnet.cz
mailto:zdenek.sustr@cesnet.cz

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

1. Introduction

Open standards are essential for building interoperable infrastructures. In the world of infras-
tructure clouds standards are now abundant, and providers adopt them at various speeds in their
IaaS frameworks. While server-side adoption is gradually picking up, general client availability
may be lacking. This article discusses a recent addition among the choice of client-side options.

To begin with, Section 2 introduces current open standards for infrastructure clouds, focusing
primarily on the Open Cloud Computing Interface (OCCI). Next, Section 3 introduces the newly
developed jOCCI library – an OCCI client library implemented in Java. Finally, Section 4 shows
how this library fits into the existing cloudscape, especially from the point of view of the EGI
Federated Cloud, and what was the motivation to implement it alongside the existing Ruby library.

2. Cloud Standards

Open standards for the IaaS (Infrastructure as a Service) model of cloud service delivery were
– as is often the case – late in coming to the scene, especially compared to proprietary protocols,
now known as widely accepted de-facto standards. Among open standards, at least the following
are worth mentioning:

CDMI – Cloud Data Management Interface [1], introduced in 2010 by SNIA (Storage Network-
ing Industry Association), focusing solely on object storage. As such, it complements rather
than competes with later standards for virtual machine management.

OCCI – Open Cloud Computing Interface [2], introduced in 2011 by the OGF (Open Grid Fo-
rum [3]), is a text-based protocol intended primarily for describing and managing IaaS re-
sources. Its highly generic design, however, makes it easily extensible to other areas of
application, such as PaaS. OCCI is discussed in more detail in Subsection 2.1.

CIMI – Cloud Infrastructure Management Interface [4], introduced in 2012 by DMTF (Dis-
tributed Management Task Force), is another protocol for managing IaaS resources. Com-
pared to OCCI it relies less on extensibility, defining numerous attributes to describe the
properties of said resources directly in the body of the standard.

Compare the release dates of those standards with Amazon EC2 [5], which has been first
introduced in 2006. As already stated above, open standards in this case trail proprietary industrial
solutions by several years.

2.1 OCCI Description

The Open Cloud Computing Interface is a standard of choice for the EGI Federated Cloud plat-
form [6], which currently federates sites running different cloud management frameworks, namely
OpenNebula, Open Stack and Synnefo. Technologies used by EGI (namely the rOCCI-server
component) also allow for the inclusion of resources managed by Amazon Web Services into the
federation, and there is development towards supporting MS Azure in the same manner. EGI Fed-
erated Cloud platform also supports CDMI for managing object storage at its sites.

2

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

+ Scheme :URI
+ Term :string
+ Title :stirng[0..1]
+ Attributes :Set<string>

Category

 entity_type: Entity

Kind Action Mixin

+ id :URI
+ title :String[0..1]

Entity

+ summary :String[0..1]

Resource Link

category

actions

target

+ sourcelinks

actions

kind mixins

r
e
l
a
t
e
dr

e
l
a
t
e
d

+ occi.network.vlan :Integer[0..1]
+ occi.network.label :Token[0..1]
+ occi.network.state :Enum

Network

+ occi.compute.architecture :Enum[0..1]
+ occi.compute.cores :Integer [0..1]
+ occi.compute.hostname :String[0..1]
+ occi.compute.speed :Float [0..1]
+ occi.compute.memory :Float [0..1]
+ occi.compute.state :Enum

Compute

+ occi.storage.size :int
+ occi.storage.state :Enum

Storage

+ occi.networkinterface.interface :String
+ occi.networkinterface.mac :String
+ occi.networkinterface.state :Enum

NetworkInterface

+ occi.storagelink.deviceid :String
+ occi.storagelink.mountpoint :String[0..1]
+ occi.storagelink.state :Enum

StorageLink

C
o
re

In
fr
as

tr
u
ct

u
re

Figure 1: Abstract OCCI Core classes (top) extended with the OCCI Infrastructure specification (bottom)
matching real-world concepts such as “compute” or “storage” resources.

As the CIMI standard had yet to be released at the time of drafting the EGI Federated Cloud
design, there was no actual comparison done between OCCI and CIMI. No such comparison is
therefore given in this article.

The current OCCI specification is available in version 1.1, consisting of three separate doc-
uments. The Core specification [7] introduces an essential (core) class structure, forming a com-
mon basis for various assumed extensions of the standard. The Infrastructure specification [8] is
one such extension, which addresses the area of virtualised resource management. While the Core
specification operates with rather abstract classes such as Resource or Link, Infrastructure maps
much more closely to the real world with definition of classes to describe Compute, Network and
Storage resources, and links inbetween, such as network interfaces (the NetworkInterface

3

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

class) and mounted storage (the StorageLink class). See Figure 1 for a diagram illustrating the
OCCI Core class structure extended with the OCCI Infrastructure specification.

The final part of the current OCCI specification – OCCI HTTP Rendering [9] – lays down the
rules for expressing OCCI classes in text, typically included in HTTP headers. A rendered object
may typically look as the following example:

1 Category: compute;scheme="http://schemas.ogf.org/occi/infrastructure#";class="kind"
2 X-OCCI-Attribute: occi.core.id="ee13808d-7708-4341-a4ba-0e42e4818218"
3 X-OCCI-Attribute: occi.core.title="exampleVM"
4 X-OCCI-Attribute: occi.compute.cores=1
5 X-OCCI-Attribute: occi.compute.memory=1.7
6 X-OCCI-Attribute: occi.compute.architecture="x86"
7 X-OCCI-Attribute: occi.compute.speed=1
8 X-OCCI-Attribute: occi.compute.state="active"

The above excerpt is a rendered representation of a compute resource, i.e., a virtual machine.
Various attributes specify its size and other properties. This is what a description of a virtual
resource returned by a cloud management framework would typically include.

The HTTP rendering has several obvious shortcomings, chief among them the fact that it is
rather difficult to parse, limited in size by the fact that it is transported inside HTTP headers, and
also unsuitable for describing multiple resources at once. Therefore it cannot be used to describe
a collection of resources (such as a VM cluster) in a single message. These problems will be
overcome in a new release – OCCI 1.2 – which will introduce and prefer JSON rendering of OCCI
objects.

OCCI 1.2 is currently available for public comment and is expected to be released later in
2015. It is discussed in greater detail in Section 5.

2.2 Implementing OCCI

To successfully implement OCCI, both the client side and the server side must support the
typical OCCI workflow, which is shown and described in Table 1 in a somewhat simplified form.

There are currently several server-side OCCI implementations in existence. Among those,
there are a few aiming at full standard coverage (i.e., a general-purpose full-fledged OCCI inter-
face), although they may not be fully implemented at the moment. Among those, at least the
following should be mentioned:

occi-os [10] – an OCCI interface in Open Stack

rOCCI-sever [11] – a standalone “translator” service implementing OCCI interfaces for a number
of cloud management frameworks, namely OpenNebula, Amazon Web Services and (cur-
rently in development) MS Azure

SNF-OCCI [12] – an OCCI interface in Synnefo

Contrary to the relative multitude of server-side implementations, there has so far been only
a single general-purpose OCCI client – the rOCCI-cli [13], part of the rOCCI Framework.
That does not mean that there are no other OCCI clients in existence, but they are single-purpose
implementations, typically providing only a subset of actions required by the workflow in their
given user group.

4

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

Client must be able to . . . Server must be able to . . .

Receive, parse and understand model Render model

The model is an overview of the server’s capabilities. It lists available OS templates (images) and
Resource templates (pre-defined virtual machine sizes), actions supported by the underlying cloud
management framework (for instance only some frameworks support the snapshot action), and
generally describes what the server side can do.

Render request, validate and send Parse request and act on it

The request typically contains an Action and a Category. The Action is for instance List or
Create (full list incidentally given in Subsection 3.1.2), and the Category is an instance of an
OCCI Category class, or a descendant thereof, on which the Action should be performed.
Before the request is even sent to the server, it is validated locally against the model to check
whether it is in the server’s capabilities to perform the action required. This minimizes communi-
cation and load on the server in general as it filters out requests that would inevitably fail with a
“not found” or “not supported” anyway.

Receive response Return response

In the response, the three-digit HTTP return code indicates success or failure (or even that the
request has been queued and will be processed asynchronously), and a rendered object gives details
of the result, for instance a rendered Compute resource instance as shown in Subsection 2.1.

Table 1: Simplified schema of a single OCCI request workflow

The rOCCI-cli package is implemented on top of a pair of libraries (rOCCI-core and
rOCCI-api), allowing developers to make their own clients using the Ruby programming lan-
guage. Traditionally, JRuby bindings were also being produced for rOCCI-core and rOCCI-api,
making the libraries theoretically available to Java developers. However, maintenance of that dual
set of libraries was proving too limiting and too costly, until it was finally decided to implement a
completely independent set of native Java libraries – the jOCCI. jOCCI is the main object of this
article and is described in the next section.

3. The jOCCI Library

The jOCCI project represents a set of Java libraries implementing the aforementioned OCCI
standard. jOCCI currently consists of two client-side components: jOCCI-core and jOCCI-api.
jOCCI-core covers basic OCCI class hierarchy from both OCCI Core [7] and OCCI Infrastruc-
ture [8] and relations between them. jOCCI-api uses jOCCI-core and together they create a
communication layer for OCCI clients and servers. Both components are in their early versions
and the whole project is still under lively development.

3.1 Components

The two components perform distinguished functions.

5

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

3.1.1 jOCCI-core

As mentioned before, jOCCI-core represents OCCI model classes and their relations. Fur-
thermore, jOCCI-core provides methods for parsing and rendering plain-text representations of
OCCI classes. This functionality is crucial for transporting data between the client and the remote
server via HTTP messages. In addition to this, jOCCI-core also validates any OCCI requests
with respect to known OCCI model. This helps to avoid a creation of requests that would be
rejected by server, even before they are sent.

jOCCI-core’s main part consists of representation of OCCI class hierarchy. OCCI core
classes are situated in package cz.cesnet.cloud.occi.core. The package contains basic
classes: Category, Kind, Mixin, Action, Entity, Resource, Link and two additional
classes: ActionInstance (representing an instance of an OCCI action class) and Attribute
(representing and attribute of OCCI entities and its properties).

OCCI infrastructure classes Compute, IPNetwork, IPNetworkInterface, Network,
NetworkInterface, Storage and StorageLink are available – all together – from pack-
age cz.cesnet.cloud.occi.infrastructure. All the classes extend either the OCCI
Resource or Link class and come with methods for accessing and modifying their specific at-
tributes. All the attributes’ values that can be represented as enumerations are included in the
cz.cesnet.cloud.occi.infrastructure.enumeration package.

OCCI entities can be grouped either in class Model or class Collection. Model repre-
sents the OCCI model structure and can contain meta classes such as Kind, Mixin or Action.
On the other hand, class Collection serves as a container for OCCI instances – Link, Resource
and ActionInstance. An instance of the Model class can be assigned to a Collection,
which means that all the entities in the collection have the same model.

All Java counterparts of OCCI classes have methods toText() and toHeaders(), which
allow them to render themselves into their text representations that can be further used in commu-
nication with a server.

In the opposite direction, the Parser interface and its implementation TextParser is used
to parse OCCI entities from server responses. TextParser currently supports the following
content types for OCCI-compliant messages:

• text/plain (HTTP body)

• text/occi (HTTP headers)

• text/uri-list (HTTP body, used for listings)

3.1.2 jOCCI-api

jOCCI-api is a Java library implementing transport functions for rendered OCCI queries. It
is built on top of jOCCI-core and currently provides HTTP transport functionality with a set of
authentication methods and basic requesting interface to easily communicate with OCCI servers.

jOCCI-api’s design is modular and can be easily extended if needed. The library uses the
Apache HttpComponents library [14] internally for implementation of the HTTP communication
protocol.

6

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

The main component of jOCCI-api is its abstract class Client and its implementation
class HTTPClient. Classes provide a communication interface composed of five methods:

• list – retrieves locations of entities from remote server

• describe – retrieves descriptions of entities from remote server

• create – creates a new entity on remote server

• delete – deletes entities from remote server

• trigger – triggers an action on entities on remote server

Additionally, methods connect and refresh are provided so that client can establish a connec-
tion and update an OCCI model if needed.

jOCCI-api also comes with a set of HTTP authentication methods. Abstract class HTTPAuthentication
provides a foundation for multiple implementations:

• class NoAuthentication – a dummy class representing no authentication method

• classes BasicAuthentication and DigestAuthentication – for BASIC and DI-
GEST authentication methods

• class X509Authentication – for authentication via X509 and VOMS certificates

• class KeystoneAuthentication – for authentication against OpenStack’s Keystone
Identity Service

All authentication methods allow to load custom CAs either from file or directory and use them
during connection initialization.

The last component of jOCCI-api is class EntityBuilder. It serves as a builder for
OCCI structures such as Resource, Link, Action, etc. according to retrieved OCCI model.
This is helpful while creating instances that have to be part of the server query.

3.2 Usage

For the time being, jOCCI doesn’t contain a client application that would communicate with
remote server. Instead, a client can be built on top of the jOCCI-api library, which provides all
the necessary functions a client would need.

Using jOCCI-api is quite straightforward. First, a client with a proper authentication
method has to be instantiated and a connection established between client and remote server. The
client can then communicate with the remote server via its query interface and receive and process
the server’s responses.

3.2.1 Creating a client

Currently the only client implementation is a class: HTTPClient. During its initialization
one can specify server URL, authentication method, media type that will be used for HTTP mes-
sages, and whether the client should automatically connect to the server or not.

1 Client client = new HTTPClient(URI.create("https://remote.server.net"), new
BasicAuthentication("username", "password"), MediaType.TEXT_OCCI, true);

7

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

3.2.2 Using authentication methods

As already mentioned above, there are four different authentication methods already prepared:
BasicAuthentication, DigestAuthentication, X509Authentication and finally
KeystoneAuthentication. Any HTTPAuthentication implementation allows loading
custom CAs either from file or directory and use them during connection initialization.

1 HTTPAuthentication auth = new X509Authentication("/path/to/certificate.pem", "password");
2 auth.setCAPath("/etc/grid-security/certificates/"); //path to CA directory
3 Client client = new HTTPClient(URI.create("https://remote.server.net"), auth);

3.2.3 Making requests

Clients can communicate with remote servers through five methods: list, describe,
create, delete and trigger.

Method list retrieves a list of locations of specified entity or locations of all entities when
called without an argument. Entities can be specified by their term (if specific enough) or by their
whole identifier (term + scheme, e.g., http://schemas.ogf.org/occi/infrastructure#compute).

1 List<URI> list = client.list();
2 ...
3 list = client.list("compute");
4 ...
5 list = client.list(URI.create("http://schemas.ogf.org/occi/infrastructure#network"));

Method describe retrieves a descriptions of specified entities from the remote server. Enti-
ties to describe can be specified in ways explained for method list and also by their location on
the remote server, which will select one specific entity. The method’s return value is a list of fully
populated Entity instances (from jOCCI-core) carrying all the information obtained from the
remote server.

1 List<Entity> entityList = client.describe("compute");
2 ...
3 entityList = client.describe(URI.create("https://remote.server.net/storage/123"));

Method create creates a new entity on the remote server. The entity passed to the create
method has to be populated at least to the extent that server will have enough information to create
it. The EntityBuilder class can be used to simplify the process of entity creation. The return
value of the method call is a location of the newly created entity.

1 Model model = client.getModel();
2 EntityBuilder entityBuilder = new EntityBuilder(model);
3 Resource resource = entityBuilder.getResource("compute");
4 resource.addMixin(model.findMixin("debian7", "os_tpl"));
5 resource.addMixin(model.findMixin("small", "resource_tpl"));
6 resource.addAttribute(Compute.MEMORY_ATTRIBUTE_NAME, "2048");
7 URI location = client.create(resource);

Method delete can be used to delete entity instances from the remote server. Entities can
be specified the same way as in the describe method and method’s return value indicates the
success of deletion.

1 boolean wasSuccessful = client.delete("compute");
2 ...
3 wasSuccessful = client.delete(URI.create("https://remote.server.net/storage/123"));

8

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

The client’s last query method is trigger. It triggers an action on entities on the remote
server. An ActionInstance instance has to be passed to the trigger method call, which
represents the action that will be triggered on the entities. Again, the EntityBuilder class
can help to create a correct ActionInstance. The method’s return value indicates whether the
action was successfully executed on selected entities or not.

1 Model model = client.getModel();
2 EntityBuilder entityBuilder = new EntityBuilder(model);
3 ActionInstance actionInstance = entityBuilder.getActionInstance("start");
4 boolean wasSuccessful =

client.trigger(URI.create("https://remote.server.net/compute/456"), actionInstance);

4. jOCCI in the Context of Other Products

By mid 2014, there were already numerous user groups relying on OCCI in their workflows,
affiliated with the EGI [15, 16, 17], as well as e-infrastructures external to EGI [18, 19]. Server-
side implementations for most popular cloud management frameworks, especially OpenNebula and
Open Stack, had already been in production for some time, but the choice of client-side solutions
was somewhat limited. The rOCCI framework libraries were available for applications using Ruby,
but most user groups chose to wrap around the rOCCI command line interface (rOCCI-cli),
which is a valid approach, but relatively difficult to maintain and also lacking the benefits of better
integrated client applications.

Demand for Java support was apparent, and the jOCCI library (section 3) was finally produced
and released in early 2015, allowing Java-oriented developers among various user groups to start
developing more cohesive and efficient client applications for OCCI-enabled cloud management
frameworks.

Figure 2 shows an EGI-centric view of the OCCI cloudscape as it is today. While OCCI sup-
port on the server side is also growing (OpenNebula, Open Stack, Synnefo, Amazon Web Services,
and an announced support for MS Azure), this article focuses on clients. There are now at least
four ways get an OCCI client suitable for the needs of any given user group:

1. There can be a completely independent OCCI implementation. No full-fledged general-
purpose clients are known to the authors, but a simple subset of OCCI actions can be man-
aged even with wrapping around curl. That is not a recommended approach (as it skips
validation altogether, for one), but it is nevertheless possible.

2. A native Ruby application building on rOCCI-core and rOCCI-api. That provides for
a very efficient use of OCCI, including the ability to use OCCI concepts (class structure . . .)
natively in the client application.

3. An application or script wrapping around rOCCI-cli. Despite being considered the “op-
tion of the last resort”, this approach is used surprisingly often. The main disadvantages are
the fact that since the command-line client is stateless, the model must be requested from
the server side on every call. Also, obviously, console output from the CLI must be parsed
and that process can be broken by simple changes in the clients’ printed messages. Thus,
wrappers require constant maintenance. Nevertheless this approach is quite popular.

9

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

Server

Custom client app.

rOCCI-core

rOCCI-api

rOCCI-core

rOCCI-api

rOCCI-cli

Shell script

Clients

Application or
script using

command-line
executables

Native Ruby
application

Independent
OCCI-compliant

client

http
occi

http
occi

http
occi

Independent
OCCI-compliant

server

Apache

Phusion Passenger

rOCCI-server

mod_ssl

Server

OpenNebula MS Azure

Backends

Custom client app.

rOCCI-core

rOCCI-api
Native Ruby

application

Custom client app.

rOCCI-core

rOCCI-api
Native Ruby

application

http
occi

Custom client app.

jOCCI-core

jOCCI-api
Native Java
application

Figure 2: Various OCCI implementations on both the client and the server side, communicating over
HTTP/OCCI

4. The new development: a custom client application built with Java, relying on the new jOCCI
libraries. This has the same advantages as using the rOCCI libraries, plus the added benefit
that Java is a language more often used (and known) in the community.

Multiple benefits are expected of the separation from rOCCI, and the decision to develop a
completely independent client library:

• Multiple independent implementations are crucial to the development of open standards.
Feedback from the development effort is helping to clear ambiguities and improve the next
release of the standard.

• Independent implementations also make the results of (often automated) interoperability tests
much more reliable, indicative of “real” interoperability rather than the same possible bug in
the client side as well as the server side library (e.g., rOCCI) canceling each other out. In
that manner, multiple side-by-side implementations help improve each other.

• One advantage stemming specifically from the fact that the jOCCI product team is very close
to, and partly overlaps with, the rOCCI team, is that the new implementation can avoid design
pitfalls found not in the development phase, but during the life cycle of the older product.

• With a native library, there is no need for emulation, cross-compilation or embedded runtime
environments for other languages, greatly simplifying the development and release process
of all components.

10

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

• What is more, a native library can rely more on language-specific design patterns and tools
for native product maintenance and distribution. In the case of jOCCI, for instance, this
means availability of OCCI libraries from the maven central repository.

All things considered, a separate Java library not only widens the choice for developers, but
also helps improve other products through more significant test results, and allows the heavier
rOCCI framework to shed its JRuby bindings.

5. Future Work

As far as it is possible to foresee, the bulk of future work will consist in implementing the
upcoming OCCI v 1.2 specification. It is being released for public comment during April 2015,
and there are major innovations:

• Proper Attribute definition in the standard – unifying the use of the term.

• Introduction of a new resource state. State error will be recognized on top of states defined
by OCCI 1.1.

• Specification of JSON rendering. The use of JSON will be preferred from OCCI 1.2 on,
replacing text rendering, which had various disadvantages as discussed in Subsection 2.1.

• Definition of the syntax and semantics of pagination, which can be used to request and
download large lists or collections in parts.

• Introduction of new extensions to the OCCI standard, namely specifications for accounting
and billing, SLA adherence and monitoring.

• Separation of rendering and protocol specifications into separate documents.

Contrary to previous expectations, the currently available OCCI 1.2 public comment version
has no specification for XML rendering, but JSON replaces that adequately. Also, the expected
redesign of the filtering mechanism is not included in OCCI 1.2.

Aside of the implementation of OCCI 1.2, future work on the jOCCI library will involve its
use in cloud interoperability testing:

• Cloud Plugfests [20] where various implementations of cloud service clients and servers are
tested against each other for interoperability in pre-set scenarios.

• EGI Federated Cloud product test suites for automated testing of interoperability solutions
used in the infrastructure.

11

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

6. Summary

An independent general-purpose client library for IaaS cloud management over OCCI (jOCCI)
has been successfully developed in Java. It answers the demand by user tool developers, who often
rely on Java to develop high-level interfaces for user communities. Besides its main purpose, i.e.,
supporting Java, it also helps establish the OCCI as a valid open standard with multiple implemen-
tations, helping improve other OCCI-compatible products on both the client side and the server
side.

7. Acknowledgements

Development of the jOCCI library was partially funded by the EGI-InSPIRE project through
the European Commission’s 7th Framework Programme (contract # INFSO-RI-261323).

References

[1] The Storage Networking Industry Association, Cloud Data Management Interface (CDMI), [Online]
Available: http://www.snia.org/cdmi [Accessed: November 20, 2015].

[2] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, OCCI specification, OCCI-WG OGF, 2011.
[Online] Available: http://occi-wg.org/about/specification. [Accessed: November 20, 2015].

[3] Open Grid Forum, [Online] Available: http://www.ogf.org [Accessed: November 20, 2015].

[4] The Distributed Management Task Force, Cloud Management Initiative, [Online] Available:
http://dmtf.org/standards/cloud [Accessed: November 20, 2015].

[5] Amazon Web Services, Amazon EC2, [Online] Available: https://aws.amazon.com/ec2/ [Accessed:
November 20, 2015].

[6] European Grid Infrastructure, Federated Cloud, [Online] Available:
https://www.egi.eu/infrastructure/cloud/ [Accessed: November 20, 2015].

[7] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, Open Cloud Computing Interface – Core,
OCCI-WG OGF, 2011. [Online] Available: http://ogf.org/documents/GFD.183.pdf [Accessed:
November 20, 2015].

[8] T. Metsch and A. Edmonds, Open Cloud Computing Interface – Infrastructure, OCCI-WG OGF,
2011. [Online] Available: http://ogf.org/documents/GFD.184.pdf [Accessed: November 20, 2015].

[9] T. Metsch and A. Edmonds, Open Cloud Computing Interface – RESTful HTTP Rendering,
OCCI-WG OGF, 2011. [Online] Available: http://ogf.org/documents/GFD.185.pdf [Accessed:
November 20, 2015].

[10] Metsch, T.; Edmonds, A., OCCI, [Online] Available: https://wiki.openstack.org/wiki/Occi [Accessed:
November 20, 2015].

[11] B. Parák, Z. Šustr, rOCCI-server Repository, [Online] Available:
https://appdb.egi.eu/store/software/rocci.server [Accessed: November 20, 2015].

[12] GRNET, snf-occi’s documentation, [Online] Available: http://www.synnefo.org/docs/snf-occi/latest/
[Accessed: November 20, 2015].

12

http://www.snia.org/cdmi
http://occi-wg.org/about/specification.
http://www.ogf.org
http://dmtf.org/standards/cloud
https://aws.amazon.com/ec2/
https://www.egi.eu/infrastructure/cloud/
http://ogf.org/documents/GFD.183.pdf
http://ogf.org/documents/GFD.184.pdf
http://ogf.org/documents/GFD.185.pdf
https://wiki.openstack.org/wiki/Occi
https://appdb.egi.eu/store/software/rocci.server
http://www.synnefo.org/docs/snf-occi/latest/

P
o
S
(
I
S
G
C
2
0
1
5
)
0
1
5

jOCCI Michal Kimle, Boris Parák, Zdeněk Šustr

[13] B. Parák, Z. Šustr, rOCCI-cli Repository, [Online] Available:
https://appdb.egi.eu/store/software/rocci.cli [Accessed: November 20, 2015].

[14] The Apache Software Foundation, Apache HttpComponents, [Online] Available: http://hc.apache.org/
[Accessed: November 20, 2015].

[15] IN2P3, JSAGA, [Online] Available: http://software.in2p3.fr/jsaga [Accessed: November 20, 2015].

[16] DIRAC Project, The DIRAC Interware, [Online] Available: http://diracgrid.org [Accessed: November
20, 2015].

[17] Barcelona Supercomputing Center, COMP Superscalar, [Online] Available:
http://www.bsc.es/computer-sciences/grid-computing/comp-superscalar [Accessed: November 20,
2015].

[18] The Cloud4E Project, Trusted Cloud Computing for Engineering, [Online] Available:
http://www.cloud4e.de [Accessed: November 20, 2015].

[19] SixSq, Slipstream, [Online] Available: http://sixsq.com/products/slipstream.html [Accessed:
November 20, 2015].

[20] Cloud Plugfests [Online] Available: http://www.cloudplugfest.org/ [Accessed: November 20, 2015].

13

https://appdb.egi.eu/store/software/rocci.cli
http://hc.apache.org/
http://software.in2p3.fr/jsaga
http://diracgrid.org
http://www.bsc.es/computer-sciences/grid-computing/comp-superscalar
http://www.cloud4e.de
http://sixsq.com/products/slipstream.html
http://www.cloudplugfest.org/

