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The Fermi-LAT 3rd source catalog (3FGL) provides the gamma-ray properties for 3034 gamma-
ray sources. While 2024 sources in the 3FGL are associated with AGNs (58 % of the total),
pulsars (5 %) and the other classes (4 %), 1010 sources (33 %) remain as unassociated sources.
In recognizing source classes for unassociated gamma-ray sources of the Fermi-LAT source cat-
alogs, various data mining techniques have been applied, e.g. classification tree and artificial
neural network. As a robust alternative to these data mining techniques, we present the Maha-
lanobis Taguchi (MT) method to recognize source classes. The MT method creates a multidimen-
sional unit space from characteristic variables of a normal class (e.g. AGN) to identify sources of
the normal class from those of the other classes using Mahalanobis distances. In this paper, we
present the results of the source classification for the unassociated gamma-ray sources in 3FGL
by applying the MT method. We also discuss a possibility of dark matter Galactic subhalos for
the unclassified sources at |b|> 20◦.

The 34th International Cosmic Ray Conference,
30 July- 6 August, 2015
The Hague, The Netherlands

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:yoshida@shibaura-it.ac.jp


P
o
S
(
I
C
R
C
2
0
1
5
)
8
5
7

A data mining approach to recognizing unassociated gamma-ray sources Kenji Yoshida

1. Introduction

The Fermi-LAT 3rd source catalog (3FGL) provides spatial, spectral, and temporal proper-
ties for 3034 gamma-ray sources. While 2024 sources in the 3FGL are associated with AGNs
(1745 sources), pulsars (167 sources) and the other classes (112 sources), 1010 sources remain as
unassociated sources [1].

In recognizing source classes for unassociated gamma-ray sources of the Fermi-LAT source
catalogs, M.Ackermann et al. (2012) [2] employed two data mining techniques to determine likely
source classification for the 1FGL unassociated sources: Classification Trees and Logistic Regres-
sion. They applied these techniques using the gamma-ray properties that are not related to source
significance, as this will bias the results.

N.Mirabal et al. [3] investigated the possibility that dark matter annihilation signals coming
from Galactic subhalos may account for a small fraction of unassociated point sources in the 2FGL.
They applied a Random Forest classifier Sibyl that offers predictions on class memberships for
unassociated 2FGL sources. In order to construct and train the Sibyl, they used the gamma-ray
properties dependent on source significance of AGNs and pulsars.

M.Doert and M.Errando (2013) [4] applied a random forest and a neural network method to
identify AGN candidates for unassociated sources in 2FGL. Combining the two learning algo-
rithms, they evaluated the false-association rate of 11 % to recognize 80 % of AGNs.

While the classification for unassociated gamma-ray sources are useful for planning multi-
wavelength follow-up observations, some sources might be unclassified as known objects such as
AGNs and pulsars. Among the unclassified sources, the interesting sources of gamma ray emission
are dark matter Galactic subhalos. Numerical simulations of cold dark matter particles indicate
that the Galactic halo contains a very large number of dark matter subhalos. As the dark matter
annihilations taking place within such dark matter subhalos emit gamma rays, the most nearby and
massive subhalos could appear as point-like gamma-ray sources without observable counterparts at
other wavelengths. The search for dark matter subhalos in the Fermi catalogs is currently ongoing
(e.g. [5]).

In this paper, we investigate the classification of unassociated gamma-ray sources in 3FGL
applying a robust alternative data mining technique: the Mahalanobis Taguchi method. We also
discuss the possibility of identifying dark matter subhalo candidates.

2. Mahalanobis-Taguchi method

The Mahalanobis Taguchi (MT) method is a robust data mining technique developed in quality
engineering [6]. The MT method is proposed as a diagnosis and forecasting method using multi-
variate data. While the MT method has been used in different diagnostic applications to make
quantitative decisions by constructing a multivariate measurement scale using data analytic meth-
ods, the MT method is applied for particle identification of cosmic ray observations [7]. One of
the main objective of the MT method is to construct a Mahalanobis space based on input charac-
teristic variables. The Mahalanobis space, which is also called the unit space, is obtained using
the standardized variables of normal data. The Mahalanobis space can be used to discriminate be-
tween normal and abnormal data to measure the degree of abnormality, so-called the Mahalanobis
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distance. This approach requires a uniformity of the normal data to construct a unit space (Maha-
lanobis space) from characteristics of samples. By applying sample data to the unit space, we can
calculate the Mahalanobis distances from the reference point.

The Mahalanobis distance is a squared distance (also denoted as D2) given by the following
formula:

D2 =
1
k

ZT
i C−1Zi, (2.1)

where k is the number of characteristics, T is transpose of a vector, C−1 is inverse of the correlation
matrix, and Zi is a standardized vector obtained by i-th characteristic Xi as follows:

Zi = (Xi −mi)/si(i = 1,2, · · · ,k), (2.2)

where mi is a mean of i-th characteristic and si is a standard deviation of i-th characteristic. We
used D as the Mahalanobis distance in this paper. As the Mahalanobis distance of a source is
closer to 1, the source is more similar to the reference sources. By using a fiducial threshold of the
Mahalanobis distance, we can discriminate signal sources from the background sources.

3. Classification of unassociated sources

In the 3FGL catalog, the gamma-ray spatial, spectral, and temporal properties measured by
the Fermi-LAT are summarized for individual sources. In this study, we selected the following
properties given by Ackermann et al. (2012) [2]. As source significance will bias results, these
properties are not related to the source significance. The hardness ratios HRi j are constructed as

HRi j =
νFνi −νFν j

νFνi +νFν j

. (3.1)

where νFνi is the spectral energy distribution for energy band i. The energy bands i of 1, 2, 3, 4, and
5 correspond to 0.1−0.3 GeV, 0.3−1.0 GeV, 1.0−3.0 GeV, 3.0−10.0 GeV, and 10.0−300 GeV,
respectively. It is also possible to define a quantity that discriminates curvature by the difference
between two hardness ratios such as HR23 −HR34. To remove the source significance dependency
for variability, we use the fractional variability described in Ackermann et al. (2010) [8]. The
fractional variability is given by

δF
F

=

√
Σi(Fi −Fav)2

(Nint −1)F2
av
−

Σiσ2
i

NintF2
av
− f 2

rel, (3.2)

where Nint is the number of time intervals (48 in 3FGL), Fav is the average flux, σi is the statistical
uncertainty in the flux Fi, and the frel is an estimate of the systematic uncertainty on the flux for
each interval (2% in 3FGL). In addition, we use the spectral index Γ of the best fitted power-law
spectrum, the Galactic Longitude (ℓ), and the Galactic Latitude (b).

Among 2024 associated sources in the 3FGL, the most abundant class of sources is AGN (1745
sources), and the second most abundant class is pulsar (167 sources). The other classes contain 112
sources. In this study, we focus on the two most abundant classes of sources in the 3FGL, AGN
and pulsar.
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3.1 AGN classification

For the AGN classification, we constructed a unit space of the attributes of AGNs as a normal
data set, and derived the Mahalanobis distances of AGNs and non-AGNs. To construct the AGN
unit space, we used the properties of the fractional variability δF/F , the hardness ratio HR12,
HR34, HR45, the spectral index Γ, the Galactic longitude ℓ, and the Galactic latitude b to transform
these properties into the following characteristics:

HR12, HR34, HR45, log(
δF
F

), Γ,
ℓ−180.0

b
,

1.0
|b|

.

To evaluate the classification performance of our method, we cross-validated using the 1745 AGNs
and the other 279 sources in the 3FGL. We held out 1/5 of the sample at random to be the testing
data set, and we used the remaining 4/5 of the sample for constructing the AGN unit space. In this
method, the construction of the unit space corresponds to training in machine learning algorithms.
We repeated this procedure 5 times, using a different set of 1/5 of the sample in each data set. At
the end, by this 5-fold cross-validation we can evaluate the testing efficiency rates for 1745 AGNs
and 279 non-AGNs.

3.2 Pulsar classification

For the pulsar classification, we constructed a unit space of the attributes of pulsars as a normal
data set, and derived the Mahalanobis distances of pulsars and non-pulsars. For the pulsar unit
space, we used the properties of the fractional variability δF/F , the hardness ratio HR23, HR34,
and HR45 to transform these properties into the following characteristics,

HR23 −HR34, HR45,
δF
F

.

In the similar way with AGN classification, we also cross-validated using the 167 pulsars and the
1857 non-pulsars of AGNs, supernova remnants, pulsar wind nebulae, and so on. For the pulsar
classification, we held out nearly 1/5 (33 sources) of the pulsar sample at random for the testing
data set, and we used remaining 134 sources to construct the pulsar unit space. By the 5-fold
cross-validation, we can evaluate the testing efficiency rates for 165 pulsars and 1857 non-pulsars.

4. Results

Figure1 shows the distributions of the Mahalanobis distance D in the AGN unit space for the
3FGL associated sources (left panel) and for the unassociated sources (right panel). The distribu-
tion of associated sources clearly shows that we can select a set of AGN and non-AGN candidates,
when setting the appropriate fiducial threshold. For 80 % efficiency rate of AGN sources with the
fiducial threshold of D = 1.08 in the AGN unit space, 9.3 % non-AGN sources (26 of 279 sources)
remains as AGN classification. For 95 % efficiency rate of AGN sources with the fiducial threshold
of D = 1.44 in the AGN unit space, 22.6 % non-AGN sources (63 of 279 sources) remains as AGN
classification.

Figure2 shows the distributions of the Mahalanobis distance D in the pulsar unit space for
the 3FGL associated sources (left panel) and for the unassociated sources (right panel). For 80 %
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efficiency rate of pulsars with the fiducial threshold of D = 1.10 in the pulsar unit space, 5.2 %
non-pulsar sources (97 of 1857 sources) remains as pulsar classification. For 95 % efficiency rate
of pulsar with the fiducial threshold of D = 2.43 in the pulsar unit space, 33.0 % non-pulsar sources
(612 of 1857 sources) remains as pulsar classification.
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Figure 1: Distributions of the Mahalanobis distances for AGN classification. Left: For sources of the
3FGL catalog associated as AGNs (red histogram) and non-AGNs (black histogram). Right: For 3FGL
unassociated sources.
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Figure 2: Distributions of the Mahalanobis distances for pulsar classification. Left: For sources of the
3FGL catalog associated as pulsars (blue histogram) and non-pulsars (black histogram). Right: For 3FGL
unassociated sources.

Combining the two classifications, we classified 1010 unassociated sources into AGN can-
didates, pulsar candidates, and unclassified candidates. By using a 95 % fiducial threshold, the
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sources are classified as 511 AGN candidates, 360 pulsar candidates, and 139 unclassified candi-
dates. In conflict case between AGN and pulsar classification, we classified the sources to be a
class with the smaller Mahalanobis distance. Figure 3 presents a spatial distribution of the com-
bined classification for the unassociated 3FGL sources in Galactic coordinates.
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Figure 3: Spatial distribution of the combined classification for unassociated 3FGL sources in Galactic coor-
dinates. Sources are classified as AGN candidates (red cross), pulsar candidates (blue square), or unclassified
(black circle).

5. Discussion

As shown in Fig. 1 and Fig. 2, the shapes of the unassociated source distributions are different
from the associated source distributions. For the discrimination between AGNs and non-AGNs in
Fig. 1, there is an apparent absence of AGN-like sources in the unassociated source distribution,
compared with the associated source distribution. For the discrimination between pulsars and non-
pulsars in Fig. 2, there is also an apparent absence of sources larger than D = 6 in the unassociated
source distribution. This may be due to the presumably different fractions of AGNs and pulsars in
the associated and unassociated samples, or there may be an additional contributing component.

While this work might be useful for planning future multi-wavelength follow-up observations,
there may be gamma-ray sources without detectable counterparts at other wavelengths. Dark matter
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annihilations taking place in nearby dark matter Galactic subhalos could appear as such gamma-ray
sources. Bertoni et al. (2015) [9] indicates that the 3FGL might contain on the order of ∼10 dark
matter subhalos. In discussion, we consider the collection of unclassified gamma-ray candidates in
3FGL.

In order to isolate outliers that might constitute dark matter subhalo candidates, we accept the
MT prediction at the 95% confidence level, in which at least 95% of the AGN and pulsar sources
agree on the MT decision. Otherwise, the sources remain without a prediction. Such threshold
value is set based on the results explained in the previous section. In total, predictions for the
380 unassociated 3FGL sources at |b| > 20◦ suggest that 281 sources are AGN candidates and 69
sources are pulsar candidates with the 95% efficiency rate. The remaining 30 sources at |b|> 20◦

are left without a firm prediction. While most of the Galactic sources, except for pulsars, are
concentrated at |b| < 20◦ among the associated sources, there are 3 associated Galactic sources at
|b| > 20◦: 2 globular clusters and 1 pulsar wind nebula. In order to better understand the nature
of the remaining 30 objects it is desired to compute their outlyingness, which is a measure of how
far away a source is from its closed class. The Mahalanobis distances in the unit space directly
present the outlyingness from the normal class. Table 1 presents the top 12 outliers among high-
latitude (|b| > 20◦) unassociated sources in 3FGL with the Mahalanobis distances in the AGN
unit space and the pulsar unit space. These sources are relatively faint sources with the source
significances of 4− 9σ . Dark matter subhalo candidates proposed by Bertoni et al. (2015) [9]
using a theoretical approach were not included in Table 1. As the outliers in Table 1 have the
relatively small Mahalanobis distances in the AGN unit space, there may be a possibility that some
of the outliers are AGNs.

Table 1: Top 12 outliers among high-latitude (|b|> 20◦) unassociated sources in 3FGL

Source ℓ b D (AGN) D (pulsar)
3FGLJ1234.7-0437 -64.913 57.996 1.975 6.214
3FGLJ0240.0-0253 174.600 -54.492 1.895 5.988
3FGLJ2258.2-3645 3.903 -64.252 1.659 6.052
3FGLJ1616.8+5846 89.516 42.688 2.536 5.679
3FGLJ2142.6-2029 31.142 -46.557 2.161 5.764
3FGLJ2250.3+1747 86.354 -36.331 1.831 5.843
3FGLJ0258.2+3555 149.895 -20.218 1.963 5.615
3FGLJ1258.4+2123 -41.094 84.038 2.281 5.316
3FGLJ1250.2-0233 -57.656 60.307 1.867 5.433
3FGLJ2006.5-0939 32.637 -21.030 1.880 5.400
3FGLJ0251.1-1829 -158.133 -61.166 1.557 5.457
3FGLJ1334.3-4152 -48.569 20.294 1.599 5.345
3FGLJ0514.6-4406 -110.526 -35.393 1.699 5.291
3FGLJ0434.3-1411c -149.264 -36.714 1.580 5.202
3FGLJ0420.4+1448 179.885 -24.215 2.073 4.692
3FGLJ1330.4+5641 112.329 59.630 2.161 4.600
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6. Conclusion

In recognizing source classes for unassociated gamma-ray sources of the 3FGL, we applied
the Mahalanobis-Taguchi method that is a robust data mining technique. This method has a ca-
pability to recognize 80 % of the AGNs in the sample of the associated sources, while having a
contamination of sources incorrectly labeled as AGNs of 9.3 %. This fraction is significantly better
than the previous report of 11 % [4]. To recognize 80 % of the pulsars, a contamination of sources
incorrectly labeled as pulsars is 5.2 %. In this paper, we suggest the source classification for the
unassociated gamma-ray sources in 3FGL using the MT method. Among 380 unassociated 3FGL
sources at |b|> 20◦, we listed unclassified sources left without a firm prediction. While theoretical
approaches start with ad hoc theoretical dark matter spectra and non-variable, high-significance
unassociated sources, this approach could give us an another useful method to search for dark
matter Galactic subhalos.
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