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Diffuse gamma rays are tracers of cosmic rays, providing information on their origin, interaction
and diffusion through a galaxy. M 31 (the Andromeda Galaxy) is the closest spiral galaxy to the
Milky Way (d = 780 kpc) and is very well studied at all wavelengths. Thus it is a prime target for
the study of diffuse gamma-ray emission. The very-high-energy (VHE, E > 100 GeV) gamma-ray
observatory VERITAS has conducted 54 hours of observations of M 31 and an upper limit on the
VHE flux is presented along with an updated Fermi-LAT (0.1 < E < 300 GeV) analysis. These
observations will be compared with predictions of the gamma-ray flux derived from models of
the inelastic scattering of VHE cosmic rays of the interstellar medium (ISM) and the interstellar
radiation field. M 31 provides an ideal opportunity to probe this mechanism. Its proximity and
spatial extent, significantly larger than the VERITAS point spread function but smaller than the
field-of-view, potentially enables the star-forming ring, 10 kpc from the galaxy core, with its dense

ISM and numerous supernova remnants to be resolved.
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1. Gamma-Ray Emission in M 31

M 31 is the closest spiral galaxy to the Milky Way (MW) with apparent dimensions of 3.2°
by 1° [1] allowing its internal structure to be studied in detail. Of particular interest is a gas-rich,
star-forming ring ~10 kpc from the galaxy centre. M 31 has been detected by the Fermi-LAT with
an integral photon flux (>100MeV) of (9.1 £1.944 £ 1.04) X 10_9ph cm2s lasa point source
but with some evidence of spatial extension [2]. M 31 has not been detected in very-high-energy
(VHE) 7-rays, upper limits on the VHE flux were presented by the HEGRA collaboration in [5] at
3.3% of the Crab Nebula flux for individual point sources close to the center of the galaxy rising to
~30% near the edges.

There are expected to be two main contributors to the VHE emission from M 31; diffuse
emission from the interaction of cosmic rays with the interstellar medium (ISM) and unresolved
point-source emission. Due to its apparent size, a detection by VERITAS will allow it to map
the VHE 7y-ray emission and thus we could determine where the emission is coming from. It
could be regions where there are a number of potentially unresolved point sources, suggesting
that it is the sources themselves, or cosmic rays that are only diffusing a short distance from the
source population, that are producing the signal. If the emission is more diffuse and coming from
regions away from potential sources, then it will suggest that the emission is caused by cosmic-rays
diffusing large distances through the galaxy from their sources. Since hadronic cosmic rays have
a significantly longer lifetime than leptonic cosmic rays this would provide good evidence for a
hadronic origin. The y-ray emission spectrum will also provide information about the underlying
physics, in particular at around 0.1 GeV where detection of a low energy cut-off (a “pion-bump”)
would provide significant evidence that the diffuse y-ray emission is of hadronic origin.

2. Predicted Gamma-Ray Emission

It is generally understood that the y-ray luminosity of normal galaxies (that is, galaxies without
an active galactic nucleus) scales with a few key parameters; the number of cosmic ray accelerators
(which scales with the star formation rate (SFR) [6]), the escape time of the cosmic rays and the
amount of target material. Working from these assumptions a number of predictions have been
made on the HE y-ray flux, for example [8] predicts the flux using the supernova rate and the mass
of hydrogen. This relationship has been explored using existing flux measurements taken from the
3FGL catalogue [4] for normal and starburst galaxies, and the two Seyfert galaxies NGC 4945 and
NGC 1068 (it is assumed that the emission is dominated by the star forming regions rather than
the central black hole). There is quite a strong correlation, as shown in Figure 1, with the best
fit showing that the luminosity scales with SFR!-?® rather than the SFR' used in [8]. However,
in [8] the luminosity also depends upon the mass of hydrogen and since the SFR also depends
upon the mass of hydrogen a relationship of SFR'?® is not unexpected [11]. Using this scaling
relationship and the measurements of the VHE flux from the starburst galaxies M 82 [17] and
NGC 253 [18] allows for predictions of the M 31 integral flux to be made of 8.79 x 107 ¥ em 257!
(above 750 GeV) and 7.24 x 1073 cm™2 s~! (above 190 GeV) respectively.

M 31 is often considered a sister galaxy to the Milky Way and thus, to a reasonable approxi-
mation, a model derived for one galaxy can be used to model the other. GALPROP [12] provides a
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Figure 1: Gamma ray luminosity (0.1 to 100 GeV) vs. SFR for “normal” galaxies overlaid with
the best fit, Luminosity o< (SFR)!28

very detailed model of the expected y-ray emission from the Milky Way (no equivalent models are
available for M 31). Using the scaling relationship and the relative SFRs (1 < SFRyw < 3, 0.35 <
SFRy31 < 1, 21;157’;2; ~ 0.5 [2]), and placing the Milky Way at the distance of M 31 (780kpc), an
estimate of the M 31 y-ray flux can be determined. In this work the model zO4LMS from [13] is
used and scaled by a factor of 0.5'2% = 0.41, hereafter this is referred to as the GALPROP model.

3. Updated Fermi-LLAT Analysis

Following its the initial detection [2], M 31 has appeared in both the 2FGL catalogue
(J0042.5+4114 [3]) and the 3FGL catalogue (J0042.5+4117 [4]), in both cases as a point source.
Analyses have also been published in [14] where they examine dark matter limits from M 31 and
in [15] where evidence for y-ray emission from a spatially extended halo around M 31 is presented.
We have conducted an updated analysis of the Fermi-LAT data, using the LATAnalysisScripts and
Fermi Science Tools v9r33p0 to conduct a binned (0.1°) analysis. Six and a half years of Pass
7 data covering the energy range 0.1 —300GeV were analysed within 30° of the center of M 31
((RA, Dec (J2000)) = (0" 43™ 35%.43, +41° 20’ 56".8)) with a 15° ROL The P7REP_SOURCE_V15
IRFs were used for event class 2 with quality cuts of DATA_QUAL==1, LAT_CONFIG==1 and
ABS(ROCK_ANGLE)<52.

Four different models of M 31 were tested: Point - a point source as published in the 3FGL.
Raw - a template to test for extended emission generated using the same Improved Reprocessing
of the IRAS Survey (IRIS) 100 um far infrared map (Figure 2a) that was used in the original Fermi-
LAT detection paper [2]. Ring - the Raw template but with the central “blob” removed (Figure 2b)
to test whether emission is better fit with a ring structure as seen in the hydrogen maps. Both
- the Ring and the Point templates in the same fit, this is to test the relative importances of the
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two models. All four models were fit as a single powerlaw with the index and normalisation (at
0.57278 GeV) free to vary.
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Figure 2: The extended templates used in the Fermi-LAT analysis derived from the IRAS Survey
(IRIS) 100 yum far infrared map of M 31 [16]

The background model was generated using the galactic diffuse model gll_iem_v05_revi, the
isotropic diffuse model iso_source_v05 and point sources from the 3FGL catalogue (all sources
outside the ROI (15°) were fixed to the values from the 3FGL). Following the production of a TS
map of the central 7.5° region, an additional point source at ((RA, Dec (J2000)) = (0" 40 53% .43,
+42° 15’ 02".0)) was added to the background model as a power law point source with the index
and amplitude left free to vary. All four models were initially fit with a power law spectrum with
the normalisation energy from the 3FGL, 0.57278 GeV (Table 1). These results show that there is
marginal evidence that M 31 is best fit by an extended source, either the Raw or the Ring model
(at the 2.24 and 1.920 level respectively), whether this is a reflection of the nature of the source or
the PSF at low energies (>1° for energies less than 1 GeV) which is comparable to the galaxy size
needs further investigation.

Prefactor /

Model TS 10~ 2em-2 s-! MeV-! Index
Point 59.28 1.90 £+ 0.06 -2.50 +0.02
Raw 64.34 2.51 £ 041 -2.23 +0.10
Ring 62.98 2.514+043 -2.21 £ 0.10

Both (Ring) 19.94 1.36 £ 0.65 -2.14 £ 0.17
(Point) 17.94 1.01 £0.18 -2.42 +0.18

Table 1: Results of the Fermi-LAT analysis of the M 31 region.

For the Raw model a spectrum for M 31 was calculated using the same binning as that used
in the original detection paper with an additional bin covering 0.1 —0.2GeV and with the highest
energy bin extended from 16.572 —50GeV to 16.572 —300GeV. Looking at the GALPROP model



VERITAS Observations Of M 31 (The Andromeda Galaxy) Ralph Bird

(Figure 4) we expect curvature at low energies and thus a power law fit over the whole range is not
suitable. Instead, a complete reanalysis was conducted with a low energy threshold of 0.7 GeV,
this gives a spectrum with a differential flux of (2.11 4 0.40g) X 107 “em2s ' MeV! at a
decorrelation energy of 4.384 GeV and with a power law index of —(2.44 £ 0.234,). The 0.7 —
300GeV flux is (9.0 4 1.74y) x 10~ %photons cm =2 s~ 1,

Overlaying these data points with the GALPROP model shows a good agreement with the
points (Figure 4). The upper limit in the 0.1 —0.2GeV range is highly suggestive of a “pion
bump”, though, with the current level of detail it is hard to draw a firm conclusion. The release of
Pass 8 with its significant improvements at low energies will provide further insight into this.

4. VERITAS Observations and Results

VERITAS is an array of four imaging atmospheric Cherenkov telescopes (IACT) located at the
Fred Lawrence Whipple Observatory (FLWO) in southern Arizona (31° 40’N, 110° 57°W, 1.3 km
a.s.l.). Designed to detect the Cherenkov emission from extensive air showers produced by cosmic
and 7y-rays, each telescope has a mirror area of 110m? and is equipped with a 499-pixel camera
of 3.5° diameter field-of-view (FoV) with an angular resolution of 0.1° at 1 TeV. The system,
completed in 2007, is run in a coincident mode requiring at least two of the four telescopes to
trigger in each event. This design enables the observations of astrophysical objects in the energy
range from 85GeV to >30TeV. For VERITAS, M 31 is a spatially extended, optically bright
target, presenting significant challenges for analysis since the standard techniques are optimised
for point sources in optically dark sky regions [19]. To overcome the optical brightness (which
impacts upon the detection of the Cherenkov emission from the extensive air shower) a large Size
(number of digital counts in the cleaned image) cut was employed prior to the reconstruction of the
images at the cost of an increase in the energy threshold. With this cut in place the impact of the
optical brightness (tested using events that fail the gamma/hadron selection cuts) is restricted to a
small central region which is excluded from this analysis.

Using the standard techniques it is not possible to determine the flux from the entire galaxy,
instead a method is employed that combines the information from multiple test regions within
M 31 and then scales the result to determine the flux from the entire galaxy. This requires a model
of the expected emission, we have used the same template as was found to be the best fit in the
Fermi-LAT analysis, the Raw model based upon the IRIS 100 um map (Figure 2a). The galaxy
was sampled using two different test region sizes, one of radius 0.1° (Small, 8 test positions) and
one of radius 0.2° (Large, 2 test positions). The test regions were selected using the same IRIS
template to cover as much of M 31 as possible, excluding the bright central region and without any
overlap (see Figures 3a and 3b for positions). To determine the excess counts and «, the ratio of the
acceptances in the signal and background regions, the counts and acceptances from all of the test
regions are combined and the background is determined using an elliptical ring surrounding M 31.
The effective areas (which are generated assuming a point source) for each test position (calculated
for the pointing, exposure, radial acceptance, etc. for that position) are combined by adding the
effective area for each test position after correction for the expected difference in response for the
predicted flux (calculated using the Raw template folded with the PSF (0.1°) in comparison with a
point source (folded with the same PSF). This is then converted into a flux for the whole of M 31



VERITAS Observations Of M 31 (The Andromeda Galaxy) Ralph Bird

by scaling the flux from the test positions by the fraction of the flux that was expected from those
test positions using the Raw template.

After a thorough data quality assessment, in particular removing any periods of time affected
by clouds or hardware issues, 54.69 hours of data (livetime) was analysed using the standard VER-
ITAS data analysis package. No evidence for emission from M 31 was detected in any of the
previously defined test regions.
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Figure 3: Skymaps of the complete VERITAS data set on M 31 overlaid with contours from
the IRIS 100 um map. The test regions are shown (solid) along with the central exclusion region
(dashed) and the background region (hatched). The impact of the optical brightness on the central
region is clearly visible.

A 95% confidence level upper limit is put on the flux from the entire galaxy using bounded
Rolke method [20] and assuming a spectral index of -2.5 (based upon the Fermi-LAT result and
observations of diffuse VHE emission within the MW). Using the Small test locations differential
upper limit is 6.91 x 1071 GeV~! cm~2 s~! at 416.9 GeV (the minimum energy for reconstruc-
tion based upon a maximum of 10% energy bias, significantly higher than the VERITAS energy
threshold due to the large Size cut employed and the location within the FoV), for the Large test
locations itis 2.7 x 107 GeV~! cm~2 s~! at 346.7 GeV. Integral upper limits over the range from
the minimum safe energy to 30 TeV are 1.9 x 10~!2cm~2 s~! (2.2% of the Crab Nebula flux) and
6.2 x 10712 ecm=2 s7! (5.2%) respectively.

5. Discussion & Conclusions

M 31 poses many challenges for analysis with IACTs, principally its apparent size and optical
brightness, thus requiring special consideration when analysing the data. 54.69 hours of VERI-
TAS observations of M 31 are presented, giving 95% confidence level upper limits on the total
VHE emission from M 31 at 6.9 x 107 GeV~! em™2 s~ ! at 416.9 GeV (Small test regions) and
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Figure 4: The VERITAS upper limits compared with the Fermi-LAT spectra and the GALPROP
model. All upper limits are at 95%.

2.7x 107 GeV~! cm=2 s~ ! at 346.7 GeV (Large test regions) assuming a spectral index of -2.5.
This limit is significantly above any model predictions of the total flux from M 31 (though no de-
tailed modelling of M 31 has been done) and the scaled flux from the starburst galaxies M 82 and
NGC 253 but, combined with the lack of any evidence of from the skymaps, it shows that there are
no extremely bright sources within M 31 nor any regions that show anomalous emission.

Six and a half years of Fermi-LAT data shows that emission is likely to be from an extended
source. At the lowest energies, there is a suggestion of a turnover in the spectrum, indicative of
pion emission being the source of the HE y-ray emission. Future analysis with Pass 8 will provide
significantly greater insight into this. A simple scaling of GALPROP model of the Milky Way fits
the Fermi-LAT data well, at the energies of VERITAS it predicts at least 1.5 orders of magnitude
less flux than the upper limit (though the contribution from unresolved point sources is likely to be
comparable to that from the diffuse emission at these energies).
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