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1. Introduction

The LHC has started running at 13 TeV in 2015 and in order to have a good comparison of
the theoretical predictions with the new experimental results, a fully automated NNLO calculation
framework is highly desirable. From the theoretical viewpoint, the reduction of one-loop ampli-
tudes to a set of Master Integrals (MI) based on unitarity methods [1, 2] and at the integrand level
via the OPP method [3, 4], one-loop calculations have been fully automated in many numerical
tools (some reviews are [5, 6]). Progress has also has been made towards the extension of these
reduction methods to the two-loop order at the integral [7, 8, 9] and the integrand [10, 11, 12, 13]
level. Contrary to the MI at one-loop [14], a complete library of two-loops MI is missing.

A very fruitful method for calculating and expressing MI in terms of GPs is the differential
equations (DE) approach [15, 16, 17, 18, 19], which has been used in the past two decades to
calculate various MI at two-loops [20, 21, 22, 23, 24, 25]. In [26] a variant of the traditional DE
approach to MI was presented, which was coined the Simplified Differential Equations (SDE) ap-
proach. In this talk we present an application of this method that first appeared in [27], concerning
the calculation of planar massless MI relevant to five-point amplitudes with one off-shell leg, as
well as the complete set of planar MI for five-point on-shell amplitudes. Pentabox integrals are
needed in particular in order to compute NNLO QCD corrections to several processes of interest at
LHC [28].

2. The pentabox integrals

The MI presented in this talk will be calculated with the SDE approach [26] and we refer
to [29] for a detailed review1. We are interested in calculating the MI of two-loop QCD five-point
amplitudes. As it is an inherent characteristic of the SDE method to interpolate among different
kinematical configurations of the external momenta, the starting point is to compute five-point
amplitudes with one off-shell leg. These amplitudes contribute to the production i.e., of one massive
final state V , plus two massless final states j1, j2 at the LHC:

p(q1)p′(q2)→V (q3) j1(q4) j2(q5), q2
1 = q2

2 = 0, q2
3 = M2

3 , q2
4 = q2

5 = 0. (2.1)

The colliding partons have massless momenta q1,q2, while the outgoing massive and the two mass-
less particles have momenta q3 and q4,q5 respectively. Of course, by appropriately taking the limit
M2

3 → 0 the pentabox MI with all external massless momenta on-shell will be obtained, that are
relevant for instance to the three-jet production

p(q1)p′(q2)→ j1(q3) j2(q4) j3(q5), q2
i = 0. (2.2)

For the off-shell case M2
3 6= 0, there are in total three families of planar MI whose members

with the maximum amount of denominators, namely eight, are graphically shown in Figure 1.
Similarly, there are five non-planar families of MI as given in Figure 2. The two-loop planar (Fig.
1) and non-planar (Fig. 2) diagrams contributing to (2.1) have not been calculated yet. In this talk,
all presented MI in the family P1 as well as all the the on-shell2 MI as M2

3 → 0. We use the c++
implementation of the program FIRE [31] to perform the IBP reduction to the set of MI in P1.

1See also the talk by C. Papadopoulos.
2Some results related to massless planar pentaboxes also appeared in [30].
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Figure 1: The three planar pentaboxes of the families P1 (left), P2 (middle) and P3 (right) with one external
massive leg.
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Figure 2: The five non-planar families with one external massive leg.
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Figure 3: The five-point Feynman diagrams, besides the pentabox itself in Figure 1 , that are contained in
the family P1. All external momenta are incoming.

The family P1 contains in total 74 MI. There are seventeen new five-point Feynman diagrams
that are not contained in the double box integral families [24, 25, 29]. Three of them are pentaboxes,
including the scalar and two MI with irreducible numerators. There are six seven-denominator, and
eight six-denominator ones, the scalar members of which are shown in Figure 3.

For the family of integrals P1 the external momenta are parametrized in x as shown in Figure 4.
The MI in the family P1 are therefore a function of a parameter x and the following five invariants:

s12 := p2
12, s23 := p2

23, s34 := p2
34, s45 := p2

45 = p2
123, s51 := p2

15 = p2
234, p2

i = 0,
(2.3)

where the notation pi··· j = pi + · · ·+ p j is used and p5 := −p1234. As the parameter x→ 1, the
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xp1
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Figure 4: The parametrization of external momenta in terms of x for the planar pentabox of the family P1.
All external momenta are incoming.

external momentum q3 becomes massless, such that our parametrization (2.3) also captures the
on-shell case M2

3 → 0.
The MI depend in total on 6 variables, namely the Lorentz products qi.q j with i< j < 5 and the

(squared) particle mass M2
3 = q2

3. The external momenta q1,q2,q4 and q5 of the massless external
particles can correspond to either of the four massless external legs in Figure 4, while the massive
particle V has an external momenta q3 = p123− xp12 with a mass:

M2
3 = (1− x)(s45− s12x). (2.4)

After fixing the x-parameterization as in Figure 4, the class of loop integrals describing the
planar family P1 is now explicitly expressed in x as:

GP1
a1···a11

(x,s,ε) := e2γE ε

∫ ddk1

iπd/2

ddk2

iπd/2

1

k2a1
1 (k1 + xp1)2a2(k1 + xp12)2a3(k1 + p123)2a4

× 1

(k1 + p1234)2a5k2a6
2 (k2− xp1)2a7(k2− xp12)2a8(k2− p123)2a9(k2− p1234)2a10(k1 + k2)2a11

, (2.5)

where γE is the usual Euler-Mascheroni constant.
Using the notation given in Eq. (2.5), the indices a1 · · ·a11 for the list of MI in the planar

family P1 is as follows3:

P1 : {10000000101,01000000101,00100000101,10000001001,01000000011,00100000011,10100001100,

10100001010,10100101000,01000101001,10100100100,10100000102,10100000101,10100000011,

10000001102,10000001101,10000001011,01000100101,01000001101,01000001011,00100100102,

00100100101,11100000101,11100000011,11000001102,11000001101,11000001012,11000001011,

11000000111,10100000112,10000001111,01100100102,01100100101,01100100011,01100000111,

01000101102,01000101101,01000101011,01000100111,01000001111,00100100111,10100101100,

10100100101,10100001101,10100001011,10100000111,111m0000111,110000m1111,11000001111,

10100101110,10100100111,10100001111,011001m0111,01100100111,010m0101111,01000101111,

11100100101,11100001101,11100001011,11100000111,111m0101101,111001m1101,11100101101,

1110m101011,11100101011,111m0100111,11100100111,111000m1111,111m0001111,11100001111,

111001m0111,11100101111,111001m1111,111m0101111}, (2.6)

In the next section we discuss the DE method that we use to calculate the above 74 MI in P1.

3The letter m is used here to indicate the index -1.
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3. Differential equations and their solution

The resulting differential equation in matrix form can be written as

∂xG = M
({

si j
}
,ε,x

)
G (3.1)

where G stands for the array of the 74 MI given in Eq. (2.6). The diagonal part of the matrix at
ε = 0 defines as usual the integrating factors, (MD)IJ = δIJ MII (ε = 0), and the equation takes the
form ∂xG = MG with G→ S−1G, S = exp(

∫
dxMD) and M→ S−1 (M−MD)S.

We found [27] that, after absorbing the integrating factors, the resulting matrix M can be
written as

MIJ = NIJ (ε)

(
20

∑
i=1

2

∑
j=1

1

∑
k=0

CIJ;i jkεk

(x− li)
j +

1

∑
j=0

1

∑
k=0

C̃IJ; jkε
kx j

)
. (3.2)

The twenty letters li, are given by

0, 1, s45
s45−s23

, s45
s12
, 1− s34

s12
, 1+ s23

s12
,

1− s34−s51
s12

, s45−s23
s12

, − s51
s12
, s45
−s23+s45+s51

, s45
s34+s45

,

s12s23−2s12s45−s12s51−s23s34+s34s45−s45s51±
√

∆1
2s12(s23−s45−s51)

, s12s23−s12s45−s12s51−s23s34+s34s45−s45s51±
√

∆2
2s12(s23−s45−s51)

,

s12s23−s12s51−s23s34+s34s45−s45s51±
√

∆1
2s12(s23+s34−s51)

, s12s45±
√

∆3
s12s34+s12s45

, s45
s12+s23

, (3.3)

where

∆1 = (s12(s51− s23)+ s23s34 + s45(s51− s34))
2 +4s12s45s51(s23 + s34− s51)

∆2 = (s12(−s23 + s45 + s51)+ s23s34 + s45(s51− s34))
2−4s12s45s51(−s23 + s45 + s51)

∆3 =−(s12s34s45(s12− s34− s45))

with ∆1 being the usual Gram determinant. The normalization factors NIJ (ε) can be cast in the
factorized form NIJ (ε) = nJ (ε)/nI (ε) and can be absorbed by redefining GI → nI (ε)GI .

Although the DE can be solved from any form described so far, e.g. (3.1) and (3.2) and the
result can be expressed as a sum of GPs with argument x and weights given by the letters in Eq.
(3.3), it is more elegant and easy-to-solve to derive a Fuchsian system of equations [32], where
only single poles in the variable x will appear. In fact the series of successive transformations

G→ (I−Ki)G, M→ (M−∂xKi−KiM)(I−Ki)
−1 i = 1,2,3

with

(K1)IJ =

{ ∫
dx(M(ε = 0))IJ I,J 6= 69,72,73,74

0 I,J = 69,72,73,74

(K2)IJ =

{ ∫
dx(M(ε = 0))IJ I,J 6= 74

0 I,J = 74

and
(K3)IJ =

∫
dx(M(ε = 0))IJ

5
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with the enumeration of the MI as given by Eq. (2.6), brings the system in to the form

∂xG =

(
ε

19

∑
i=1

Mi

(x− li)

)
G

where the residue matrices Mi are independent of x and ε . It should be noticed that the series of
the above transformations do not correspond to the one described by the Moser algorithm [33, 34,
35, 36]. The result can be straightforwardly given as

G = ε
−2b(−2)

0 (3.4)

+ ε
−1
(
∑GaMab(−2)

0 +b(−1)
0

)
+
(
∑GabMaMbb(−2)

0 +∑GaMab(−1)
0 +b(0)

0

)
+ ε

(
∑GabcMaMbMcb(−2)

0 +∑GabMaMbb(−1)
0 +∑GaMab(0)

0 +b(1)
0

)
+ ε

2
(
∑GabcdMaMbMcMdb(−2)

0 +∑GabcMaMbMcb(−1)
0 +∑GabMaMbb(0)

0 +∑GaMab(1)
0 +b(2)

0

)

with the arrays b(k)
0 , k =−2, ...,2 representing the x-independent boundary terms in the limit x = 0

at order εk. The expression is in terms of Goncharov polylogarithms, Ga1···an =G (la1 , la2 , . . . , lan ;x).
The limit x = 1 represents the solution for all planar pentabox on-shell Feynman integrals. The

limit can easily obtained by properly resumming the logk (1− x) terms. Interestingly enough we
found a very simple formula for this limit given by

Gx=1 =

(
I+

3
2

M2 +
1
2

M2
2

)
Gtrunc (3.5)

with M2 the residue matrix at x = 1 and Gtrunc derived from Eq.(3.4), by properly removing all
divergencies proportional to logk (1− x) and setting x = 1.

For the majority of the MI in the original basis (2.6), their boundary behaviour are captured by
the DE itself as was also the case for the doublebox families [29]. To explain this, we turn to the
language of expansion by regions [37, 38] which states that all MI can be written as an expansion
in terms of the form ai jxi+ jε . Since such functions are linearly independent, linear equations for the
coefficients ai j can be found by plugging such expansions for the integrals in the DE. The boundary
conditions correspond to the leading terms in the expansion as x→ 0 and thus they are described
by the expansion terms ai jxi+ jε , where i = i0 is the smallest integer such that ai j is nonvanishing.
In this way the DE themselves set constraints on the coefficients ai j and therefore the boundary
conditions.

In general a MI G behaves at the boundary x→ 0 as follows [37, 38]:

Gres = lim
x→0

G = ∑
j

c jxi0+ jε +d jxi0+1+ jε +O(xi0+2), (3.6)

where in the expression Gres, the logarithms logk(x) have been resummed into terms of the form
∼ xαε at the boundary x = 0. As explained above, by putting the above form (3.6) for the integrals
in the DE and equating the terms xi+ jε with the same exponents on both sides of the DE, linear
equations are found for the coefficients ci and di. We solved these linear equations for the coef-
ficients in the original basis (2.6) from the bottom-up. In other words we first solved the linear
equations for the non-trivial MI with least amount of denominators and then recursively solved the

6



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
1
0
8

The calculation of a massive planar pentabox with a differential equation method Christopher Wever

coefficients for those MI with more denominators. At every step we used the solutions for the coef-
ficients of the MI with less denominators that were found in the previous steps. The expressions for
the trivial MI, i.e. those that satisfy a homogeneous DE, are plugged in directly and contribute to
the inhomogeneous part of the linear equations for the coefficients. We note here that for the large
majority of integrals we did not need to solve for the coefficients di that correspond to x-suppressed
terms. Their calculations were only required for those integrals whose DE had singularities of the
form x−2+αε at the boundary x = 0 (such singularities were also encountered for the DE of the
one-loop pentagon discussed in [26]). Once the resummed terms in equation (3.6) were calculated,
the resulting DE for G f in := G−Gres have no singularities at x = 0 and can be directly integrated
to Goncharov polylogarithms [39, 40, 41].

For the pentabox family P1 specifically, the majority of the coefficients are fixed by these equa-
tions, while some others are not. We found in practice that for most of the integrals, the coefficients
which are not fixed by the linear equations are zero and we confirmed this by the method of expan-
sion by regions. However, for some integrals we found that the method of expansion by regions
predicts that some coefficients that are not determined by the linear equations, are in fact non-zero
and require an explicit calculation. For those integrals we used various other methods to calcu-
late the unknown and nonvanishing coefficients (cf. [27] for further details). Once all boundary
conditions were found for the integrals in the original basis (2.6), the boundary conditions for the
canonical basis followed directly from the relation between the two bases that is described above.

The complete expressions for all MI are available in the ancillary files [42]. The solution for
all 74 MI contains O(3,000) GPs which is approximately six times more than the corresponding
double-box with two off-shell legs planar MI. We have performed several numerical checks of
all our calculations. The numerical results, also included in the ancillary files [42], have been
performed with the GiNaC library [43] and compared with those provided by the numerical code
SecDec [44, 45, 46, 47, 48] in the Euclidean region for all MI and in the physical region whenever
possible (due to CPU time limitations in using SecDec) and found perfect agreement. For the
physical region we used the analytic continuation as described in [29]. At the present stage we are
not setting a fully-fledged numerical implementation, which will be done when all families will
be computed. By using HyperInt [49] to bring all GPs in their range of convergence4, before
evaluating them numerically by GiNaC, the complete library of 74 MI contains O(6,000) GPs that
all admit a fast numerical evaluation by their series expansions. Moreover expressing GPs in terms
of classical polylogarithms and Li2,2, could also reduce substantially the CPU time [50, 51]. Based
on the above we estimate that a target of O

(
102−103) milliseconds can be achieved.

4. Conclusions

In this talk we presented results of one of the topologies of planar Master Integrals related to
massless five-point amplitudes with one off-shell leg as well as the full set of massless planar Mas-
ter Integrals for on-shell kinematics. It follows that based on the Simplified Differential Equations
approach [26] these MI can be expressed in terms of Goncharov polylogarithms. The complexity
of the resulting expressions is certainly promising that the project of computing all MI relevant

4See also the talk by D. Tommasini.
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to massless QCD, namely all eight-denominator MI with arbitrary configuration of the external
momenta, is feasible. Having such a complete library of two-loop MI, the analog of A0,B0,C0,D0

scalar integrals at one loop, the reduction of an arbitrary two-loop amplitude à la OPP can pave the
road for a NNLO automation in the near future.
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