
P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
9
6

A walk on sunset boulevard

Luise Adams
Johannes Gutenberg-Universität Mainz
E-mail: ladams01@uni-mainz.de

Christian Bogner
Humboldt-Universität zu Berlin
E-mail: bogner@math.hu-berlin.de

Stefan Weinzierl∗
Johannes Gutenberg-Universität Mainz
E-mail: weinzierl@uni-mainz.de

A walk on sunset boulevard can teach us about transcendental functions associated to Feynman
diagrams. On this guided tour we will see multiple polylogarithms, differential equations and
elliptic curves. A highlight of the tour will be the generalisation of the polylogarithms to the
elliptic setting and the all-order solution for the sunset integral in the equal mass case.

12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative
Corrections for the LHC and Future Colliders)
15-19 June 2015
UCLA Department of Physics & Astronomy Los Angeles, CA, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:ladams01@uni-mainz.de
mailto:bogner@math.hu-berlin.de
mailto:weinzierl@uni-mainz.de


P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
9
6

A walk on sunset boulevard Stefan Weinzierl

1. Motivation

Analytic calculations of Feynman integrals are important for precision particle physics. Due
to the presence of ultraviolet or infrared divergences these calculations usually employ dimensional
regularisation. The result is presented as a Laurent series in the dimensional regularisation param-
eter ε . This talk is centred around two questions:

Q1: Which transcendental functions appear in the ε j-term?
Q2: What are the arguments of these function?

We are far away from giving a complete answer to these two questions. However, there has been
significant progress in the past years and in this talk we report on the state-of-the-art.

Let us start with the basics: For one-loop integrals and for the expansion around four space-
time dimensions the answer to question 1 for the ε0-term is simple: There are just two transcen-
dental functions. These are the logarithm and the dilogarithm

Li1 (x) = − ln(1− x) =
∞

∑
n=1

xn

n
, Li2 (x) =

∞

∑
n=1

xn

n2 . (1.1)

There is a wide class of Feynman integrals which evaluate to generalisations of the two transcen-
dental functions above, called multiple polylogarithms. We review multiple polylogarithms in the
next section. The multiple polylogarithms are functions, which by now are well understood.

Beyond the class of multiple polylogarithms we encounter “terra incognita”. There are Feyn-
man integrals, which cannot be expressed in term of multiple polylogarithms. The simplest integral
of this type is the two-loop sunset integral (also known as sunrise integral in the eastern parts of
the world). For this reason, the two-loop sunset integral is a guide, which allows us to explore the
“terra incognita” of functions beyond the class of multiple polylogarithms.

We may explore this field systematically step-by-step: We first determine an (inhomogeneous)
differential equation for the (yet) unknown two-loop sunset integral. We then solve the differential
equation: We first find the solutions of the corresponding homogeneous differential equation and
then construct the solution of the original inhomogeneous differential equation. In all these steps
guidance from algebraic geometry is very helpful.

2. Multiple polylogarithms

An obvious generalisation of the logarithm and the dilogarithm in eq. (1.1) are the (classical)
polylogarithms (with m ∈ N):

Lim (x) =
∞

∑
n=1

xn

nm . (2.1)

Explicit calculations teach us that we need in addition a generalisation to multiple arguments, which
brings us to multiple polylogarithms. The multiple polylogarithms are defined by [1–3]

Lin1,n2,...,nk (x1,x2, ...,xk) =
∞

∑
j1=1

j1−1

∑
j2=1

...
jk−1−1

∑
jk=1

x j1
1

jn1
1

x j2
2

jn2
2
...

x jk
k

jnk
k
. (2.2)
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The multiple polylogarithms have also a representation as iterated integrals. Let us define functions
G for zk 6= 0 by

G(z1, ...,zk;y) =

y∫
0

dt1
t1− z1

t1∫
0

dt2
t2− z2

...

tk−1∫
0

dtk
tk− zk

. (2.3)

In this definition one variable is redundant due to the scaling relation G(z1, ...,zk;y)=G(xz1, ...,xzk;xy).
To relate the multiple polylogarithms to the functions G it is convenient to introduce the following
short-hand notation:

Gm1,...,mk(z1, ...,zk;y) = G(0, ...,0︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0︸ ︷︷ ︸
mk−1

,zk;y). (2.4)

Here, all z j for j = 1, ...,k are assumed to be non-zero. One then finds

Lim1,...,mk(x1, ...,xk) = (−1)kGm1,...,mk

(
1
x1
,

1
x1x2

, ...,
1

x1...xk
;1
)
. (2.5)

Methods for the numerical evaluation of multiple polylogarithms are available [4]. On the mathe-
matical side, multiple polylogarithms are closely related to punctured Riemann surfaces of genus
zero [2, 5, 6].

3. Differential equations for Feynman integrals

Let us consider a scalar Feynman integral. This integral may depend on Lorentz invariants s jk

and internal masses squared m2
i . Suppose that it is not feasible to compute the integral directly. A

possible strategy is to split the task into two parts: Let us pick one variable t from the set {s jk,m2
i }.

We first try to find an ordinary differential equation for the (unknown) Feynman integral IG(t):

r

∑
j=0

p j(t)
d j

dt j IG(t) = ∑
i

qi(t)IGi(t). (3.1)

In general we will obtain an inhomogeneous differential equation, where the inhomogeneous term
consists of simpler (known) integrals IGi . The coefficients p j(t), qi(t) are polynomials in t. The
number r denotes the order of the differential equation. In a second step one tries to solve the
differential equation. It is always possible to perform the first step, so the non-trivial part consists
in solving the differential equation. Methods and algorithms for finding the differential equation
can be found in [7–14].

Let us look at a few special cases: Suppose the differential operator factorises into linear
factors:

r

∑
j=0

p j(t)
d j

dt j =

(
ar(t)

d
dt

+br(t)
)
...

(
a2(t)

d
dt

+b2(t)
)(

a1(t)
d
dt

+b1(t)
)
. (3.2)

This corresponds to an iteration of r first-order differential equations and can be solved step-by-step
with the methods for first-order differential equations. We denote the homogeneous solution of the

3
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j-th factor by

ψ j(t) = exp

− t∫
0

ds
b j(s)
a j(s)

 . (3.3)

The full solution of the differential equation is given by iterated integrals of the form

IG(t) = C1ψ1(t)+ψ1(t)
t∫

0

dt1
a1(t1)ψ1(t1)

C2ψ2(t1)+ψ2(t1)
t1∫

0

dt2
a2(t2)ψ2(t2)

...

...

Crψr(tr−1)+ψr(tr−1)

tr−1∫
0

dtr
ar(tr)ψr(tr)

∑
i

qi(tr)IGi(tr)

 . (3.4)

The r integration constants are denoted by C1, ..., Cr. From the integral representation of the
multiple polylogarithms in eq. (2.3) we deduce that multiple polylogarithms are of this form.

We are interested in transcendental functions, which go beyond the class of multiple polylog-
arithms. Suppose the differential operator

r

∑
j=0

p j(t)
d j

dt j (3.5)

does not factor into linear factors. The next more complicated case consists of a differential opera-
tor which contains one irreducible second-order differential operator

a j(t)
d2

dt2 +b j(t)
d
dt

+ c j(t). (3.6)

Let us first look at an example from mathematics. The differential operator of the homogeneous
second-order differential equation[

t
(
1− t2) d2

dt2 +
(
1−3t2) d

dt
− t
]

f (t) = 0 (3.7)

is irreducible. The solutions of this differential equation are K(t) and K(
√

1− t2), where K(t) is
the complete elliptic integral of the first kind:

K(t) =

1∫
0

dx√
(1− x2)(1− t2x2)

. (3.8)

We will soon encounter irreducible second-order differential operators and elliptic integrals in a
physics case.

4. The two-loop sunset integral

It is now time to introduce the two-loop sunset integral [15–28]. The two-loop sunset integral,

4
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p

m1

m2

m3

Figure 1: The two-loop sunset graph.

shown in fig. 1 is given in D-dimensional Minkowski space by

S111
(
D, p2,m2

1,m
2
2,m

2
3,µ

2) =
(
µ

2)3−D
∫ dDk1

iπ
D
2

dDk2

iπ
D
2

dDk3

iπ
D
2

δ D (k1 + k2 + k3− p)
3
∏
i=1

(
−k2

i +m2
i

) . (4.1)

In eq. (4.1) the three internal masses are denoted by m1, m2 and m3. The arbitrary scale µ is
introduced to keep the integral dimensionless. The quantity p2 denotes the momentum squared
(with respect to the Minkowski metric) and we will write t = p2. Where it is not essential we will
suppress the dependence on the masses mi and the scale µ and simply write S111(D, t) instead of
S111(D, t,m2

1,m
2
2,m

2
3,µ

2). In terms of Feynman parameters the two-loop integral is given by

S111 (D, t) = Γ(3−D)
(
µ

2)3−D
∫
σ

U 3− 3
2 D

F 3−D ω (4.2)

with the two Feynman graph polynomials

U = x1x2 + x2x3 + x3x1, F =−x1x2x3t +
(
x1m2

1 + x2m2
2 + x3m2

3
)
U . (4.3)

The differential two-form ω is given by ω = x1dx2∧dx3 +x2dx3∧dx1 +x3dx1∧dx2. The integra-
tion is over σ = {[x1 : x2 : x3] ∈ P2|xi ≥ 0, i = 1,2,3}.

4.1 The sunset integral viewed from algebraic geometry

The sunset integral is finite in two space-time dimensions and eq. (4.2) reduces for D = 2 to

S111 (2, t) = µ
2
∫
σ

ω

F
. (4.4)

The integrand of eq. (4.4) depends only on the graph polynomial F , but not on the other graph
polynomial U . From the point of algebraic geometry there are only two objects in the game: The
region of integration σ and the zero set X of the graph polynomial F = 0. These two sets intersect
in three points on the coordinate axes. This is shown in the left picture of fig. 2. The equation

−x1x2x3t +
(
x1m2

1 + x2m2
2 + x3m2

3
)
(x1x2 + x2x3 + x3x1) = 0 (4.5)

defines a cubic curve in P2 (a Riemann surface of genus one) and – together with the choice of a
rational point as origin – an elliptic curve. By a change of coordinates we can bring the elliptic
curve into the Weierstrass normal form y2z− 4x3 + g2(t)xz2 + g3(t)z3 = 0. In the chart z = 1 this

5
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x1

x2

x3

σ

X

x

y

Re z

Im z

Re w

Im w

Figure 2: Representations of an elliptic curve: The left picture shows a sketch of the integration region
σ and the zero set X of the graph polynomial F = 0. These two sets intersect in three points (red dots)
on the coordinate axes. The next picture shows a plot of an elliptic curve in Weierstrass normal form
y2 = 4x3− g2x− g3. The third picture shows the torus C/Λ, where the lattice Λ is spanned by the two
periods ψ1 and ψ2. Points in C, which differ by a lattice vector, are identified. The right picture shows the
Jacobi uniformization C∗/q2Z, where points of C∗ are identified, if they differ by a power of q2.

reduces to y2− 4x3 + g2(t)x+ g3(t) = 0. Note that the elliptic curve varies with t. The second
picture of fig. 2 shows a plot of an elliptic curve in Weierstrass normal form.

Away from D = 2 the other graph polynomial U will contribute to the integrand. The set
U = 0 defines a Riemann surface of genus zero. We will start the discussion of the analytic result
for the sunset integral for D = 2 and come back to the D 6= 2-case in section 4.5.

4.2 The differential equation

In two dimensions we have a second-order differential equation [22]:[
p2(t)

d2

dt2 + p1(t)
d
dt

+ p0(t)
]

S111 (2, t) = µ
2 p3(t). (4.6)

The order of the differential equation follows from the fact, that the first cohomology group of an
elliptic curve is two-dimensional. The coefficients p0, p1, p2 and p3 are polynomials in t. The
explicit expressions can be found in [22]. For illustration purposes let us quote the explicit results
for the equal mass case:[

t
(
t−m2)(t−9m2) d2

dt2 +
(
3t2−20tm2 +9m4) d

dt
+ t−3m2

]
S111 (2, t) = −6µ

2. (4.7)

4.3 Solutions of the homogeneous differential equation

As a first step towards the solution of the differential equation we need the solutions of the
corresponding homogeneous differential equation:[

p2(t)
d2

dt2 + p1(t)
d
dt

+ p0(t)
]

S111 (2, t) = 0. (4.8)

The solutions of the homogeneous differential equation are the periods of the elliptic curve [23]. In
detail, these solutions are given as follows: We start from the cubic curve F = 0 and pick one of
the three points

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] (4.9)

6
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as origin O of the elliptic curve. By a change of variables we bring this curve into the Weierstrass
normal form y2 = 4(x−e1)(x−e2)(x−e3), with e1+e2+e3 = 0. All three choices will lead to the
same Weierstrass normal form. The explicit expressions for the roots e1, e2 and e3 are

e1/2 =
1

24µ4

(
−t2 +2M100t +∆±3

√
D
)
, e3 =−e1− e2, (4.10)

with M100 = m2
1 +m2

2 +m2
3, ∆ = µ1µ2µ3µ4, D = (t−µ2

1 )(t−µ2
2 )(t−µ2

3 )(t−µ2
4 ). Here, we denote

by µ1, µ2 and µ3 the pseudo-thresholds µ1 = m1+m2−m3, µ2 = m1−m2+m3, µ3 =−m1+m2+

m3, and by µ4 the threshold µ4 = m1 +m2 +m3. The modulus k and the complementary modulus
k′ of the elliptic curve are given by

k =
√

e3− e2

e1− e2
, k′ =

√
1− k2 =

√
e1− e3

e1− e2
. (4.11)

The periods of the elliptic curve (and the solutions of the homogeneous differential equation) are
then

ψ1 = 2
e3∫

e2

dx
y

=
4µ2

D
1
4

K (k) , ψ2 = 2
e3∫

e1

dx
y

=
4iµ2

D
1
4

K
(
k′
)
. (4.12)

4.4 The inhomogeneous solution

Let us now turn to the solution of the inhomogeneous differential equation. We have to address
which transcendental functions we encounter there, and the arguments of these functions.

4.4.1 Functions in the inhomogeneous solution

In addition to the multiple polylogarithms we will need the following transcendental functions

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1 (x1, ...,xl;y1, ...,yl;q) =

=
∞

∑
j1=1

...
∞

∑
jl=1

∞

∑
k1=1

...
∞

∑
kl=1

x j1
1

jn1
1
...

x jl
l

jnl
l

yk1
1

km1
1

...
ykl

l
kml

l

q j1k1+...+ jlkl

l−1
∏
i=1

( jiki + ...+ jlkl)
oi

. (4.13)

We call the linear combination

E2;0 (x;y;q) =
1
i

[
1
2

Li2 (x)−
1
2

Li2
(
x−1)+ELi2;0 (x;y;q)−ELi2;0

(
x−1;y−1;q

)]
(4.14)

the elliptic dilogarithm [24, 26, 29].

4.4.2 Arguments of these functions

The sunset integral defined in eq. (4.1) depends for a given space-time dimension D on the
variables t, m2

1, m2
2, m2

3 and µ2. It is clear from the definition that the sunset integral will not change
the value under a simultaneous rescaling of all five quantities. This implies that the integral depends
only on the four dimensionless ratios t/µ2, m2

1/µ2, m2
2/µ2 and m2

3/µ2. It will be convenient to view
the non-trivial part of the integral as a function of five new variables

q, w1, w2, w3 and
m2

1m2
2m2

3
µ6 . (4.15)

7
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The variables w1, w2 and w3 satisfy w1w2w3 = 1, therefore there are again only four independent
variables. The variables q, w1, w2 and w3 are closely related to the elliptic curve defined by F = 0.

The nome q is defined by

q = eiπτ , (4.16)

where τ is the ratio of the two periods ψ2 and ψ1, given by τ = ψ2
ψ1

. The geometric interpretation
of the variables w1, w2 and w3 is as follows: An elliptic curve can be represented in several ways.
We started from the cubic curve F = 0 together with the choice of one of the points in eq. (4.9)
as origin and encountered already the Weierstrass normal form. In addition we may represent
an elliptic curve as a torus C/Λ, where the lattice Λ is spanned by the two periods ψ1 and ψ2.
Furthermore, there is the Jacobi uniformization C∗/q2Z, where points of C∗ are identified, if they
differ by a power of q2. These representations are shown in fig. 2. Recall that we choose one point
from eq. (4.9) as origin of the elliptic curve. For a given choice there are two points, which are
not chosen as origin. We may now look at the images of these points in the Jacobi uniformization.
Repeating this for all three possible choices as origin, defines six points w1,w2,w3,w−1

1 ,w−1
2 ,w−1

3
in the Jacobi uniformization. In formulas we have

wi = eiβi , βi = π
F (ui,k)

K (k)
, ui =

√
e1− e2

x j,k− e2
, x j,k = e3 +

m2
jm

2
k

µ4 . (4.17)

In the definition of ui we used the convention that (i, j,k) is a permutation of (1,2,3). In the
definition of βi the incomplete elliptic integral of the first kind appears, defined by

F (z,x) =

z∫
0

dt√
(1− t2)(1− x2t2)

. (4.18)

In the equal mass case we have w1 = w2 = w3 = exp(2πi/3).

4.5 Recent results

Putting everything together, we obtain for the sunset integral in two space-time dimensions
with arbitrary masses [26]:

S111 (2, t) =
4[(

t−µ2
1

)(
t−µ2

2

)(
t−µ2

3

)(
t−µ2

4

)] 1
4︸ ︷︷ ︸

algebraic prefactor

K (k)
π︸ ︷︷ ︸

elliptic integral

3

∑
j=1

E2;0 (w j;−1;−q)

︸ ︷︷ ︸
elliptic dilogarithms

.

Here, t denotes the momentum squared, µ1,µ2,µ3 the pseudo-thresholds, µ4 the threshold, K(k)
the complete elliptic integrals of the first kind, k,q the modulus and the nome of the elliptic curve,
E2;0(x;y;q) the elliptic dilogarithm and w1,w2,w3 points in the Jacobi uniformization of the elliptic
curve. The result consists of three parts, an algebraic prefactor, an elliptic integral normalised to π

and elliptic dilogarithms.

8
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4.5.1 The sunset integral in D = 4−2ε dimensions

Up to now we considered the sunset integral in D = 2 dimensions. Away from D = 2 dimen-
sions the sunset integral will depend not only on the graph polynomial F , but also on the graph
polynomial U . Around D = 4−2ε we have the Laurent expansion

S111 (4−2ε, t) = e−2γε

[
1
ε2 S(−2)

111 (4, t)+
1
ε

S(−1)
111 (4, t)+S(0)111(4, t)+O (ε)

]
. (4.19)

Around D = 2−2ε we have the Taylor expansion

S111 (2−2ε, t) = e−2γε

[
S(0)111(2, t)+ εS(1)111(2, t)+O

(
ε

2)] . (4.20)

The pole terms S(−2)
111 (4, t) and S(−1)

111 (4, t) are well known and involve only logarithms. Dimen-
sional recurrence relations relate S(0)111(4, t) to S(0)111(2, t) and S(1)111(2, t). (In the equal mass case the
dependence of S(0)111(4, t) on S(1)111(2, t) drops out.) The analytic result for S(1)111(2, t) involves only the
functions discussed in section 4.4.1 and all arguments for the x’s and the y’s are from the set [27]{

w1,w2,w3,w−1
1 ,w−1

2 ,w−1
3 ,1,−1

}
. (4.21)

4.5.2 The all-order result in the equal mass case

In the equal mass case we may consider the full Taylor expansion around D = 2−2ε:

S111 (2−2ε, t) = e−2γε
∞

∑
j=0

ε
jS( j)

111(2, t). (4.22)

Each term in this Taylor expansion can be expressed in terms of the functions discussed in sec-
tion 4.4.1 and all arguments for the x’s and the y’s are from the set [28]{

e
2πi
3 ,e−

2πi
3 ,1,−1

}
. (4.23)

5. Summary

The sunset integral is the simplest Feynman integral, which cannot be expressed in terms of
multiple polylogarithms. It serves as a guide to explore the class of functions beyond the multiple
polylogarithms. Methods from algebraic geometry play a prominent role. Together with parallel
developments on cluster algebras [30–32] and string amplitudes [33–35] we look at exciting times
ahead of us.
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