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We develop a general formulation of Dynamics, based on the notion of history (defined as a
possible, or kinematical, evolution of a dynamical system), rather than evolution or phase space
varaibles. It applies in particular to field theories, allowing explicitely covariant Lagrangian and
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which remain always covariant; evolution and conservation equations, a generalized symplectic
form which is the historical counterpart of the multisymplectic form... Our treatment applies to the
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1. Introduction

We develop a general formulation of dynamics, based on the notion of history. An history is a
possible (or kinematical) evolution of a dynamical system. When it obeys the dynamical equations,
an history becomes physical (or dynamical), and represents a particular solution.

This formalism gives a covariant description of field theories (hereafter, FT’s) exactly similar
to time dynamics (hereafter, tD): space-time (in FTs) is treated on the same footing than time (in
tD); only the dimensionallity differs and this never appears in the formalism. The treatment remains
entirely covariant and does not involve any notion of time, or any splitting of space-time.

An history (a field) is not required to be a function, like, e.g., for a scalar field. It may be a
r-form on space-time, like the Faraday 2-form for electromagnetism; or the cotetrad and connection
one-forms for general relativity in the first order formalism. More generally, it is a section of a fiber
bundle whose basis is called the evolution domain.

This requires to define a differential calculus in S , the infinite-dimensional space of histo-
ries. Fist, we generalize functions to historical-maps (Hmaps), which form the algebra Ω0(S ),
generalizing that of functions. Then we define derivations (generalized vector-fields) and gener-
alized [differential] forms on S . This allows us to perform variational calculus, and to develop
both Lagrangian and Hamiltonian formalisms in that space. They admit very simple and synthetic
expressions and remain entirely covariant. They provide natural historical generalizations of most
mathematical entities appearing in usual dynamics; in particular the (canonical) Lagrangian forms,
Cartan forms, symplectic forms, and obeying general conservation laws. Our covariant formal-
ism offers a synthesis between the multisymplectic geometry (see, e.g., [2]), the “ covariant phase
space" approaches (see, e.g., [2]), the canonical approach and the geometry of the space of solu-
tions. Its Hamiltonian version links the multisymplectic formalism with the work of [11].

The section 1 introduces the notion of histories, with their lifts to velocity-histories involved in
the Lagrangian dynamics. Section 2 recalls the mathematical formalism [5], including the defini-
tion of historical maps. Section 3 shortly presents the Lagrangian version of Dynamics given in [5],
with an historical expression of Noether theorem. Section 4 presents the Hamiltonian formalism
and the historical symplectic form. More details are given in [5] and [6].

1.1 Histories

As our general definition, an history is an r-form on an evolution domain D , taking its val-
ues in a configuration space Q. Occasionally, we call it a “ r-history ". The evolution domain D is
the time line for tD, space-time for FT’s (no space + time splitting required). For general relativity,
this is a differential manifold without defined metric. Very generally, D is a n-dimensional mani-
fold (possibly with a metric), that we treat as some kind of “ n-dimensional timeline ", w.r.t. which
the evolution is expressed without any specific parameter. We occasionally use [local] coordinates
xµ on D , which disappear in our final results written in covariant form. They generate adapted
[local] coordinates in the various fiber bundles we consider. We write Vol the volume form defined
from these coordinates, and ? the corresponding Hodge duality (those are non covariant entities).

The configuration space Q represents the degrees of freedom of the system. A composite
history involves many of them. However it can be expanded in components, and each of them
will be be treated as a scalar–valued history, so that we restrict our treatment to the case Q = IR,
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without loss of generality (composite examples are treated in [5, 6]). The electromagnetic potential
A, for instance, is not a composite history, but as a 1–history, i.e., a scalar–valued one form on
space-time. The scalar field is a zero–history, a (zero-form on space-time). For first order general
relativity, D is a differentiable manifold without prior metric.

The r-histories are sections of the configuration bundle Q→ D . For scalar–valued histories
(that we consider here), it identifies with [a subbundle of] the bundle of r-forms

∧r T∗D ⊂
∧

T∗D
(including functions as the case r = 0). They form the infinite–dimensional space of r-histories,

S ⊆ Ω
r
D

de f
= Sect(

r∧
T∗D) ⊂ ΩD

de f
= Sect(

∧
T∗D) .

The lift of a section c of Q, to its first jet bundle J1Q, gives its first jet extension C
de f
= (c,dc).

We call it the corresponding velocity-history, and it is nothing but a more convenient way to
express c (d is the exterior derivative in D). We call SV the space of velocity-histories. In [5], we
have derived the Lagrangian dynamics in SV , introducing the notion of Historical Maps.

2. Historical Maps and Differential calculus

In all formulas, the wedge product in D is implicitly expressed by simple juxtapostion.
An historical map (Hmap) is a generalization of the notion of functional. We define it as a

map (see [5] for details)

F : M
de f
= (ΩD)

2→ΩD : (c,γ)→ F(c,γ).

We call it a Hmap of type [0;R] when F(c,γ) is a R–form.
The wedge product in D defines the product of the Hmaps (see [5]). Thus they form an

algebra F = Ω0(M ), that we treat like an algebra of functions over M , seen itself as an infinite
dimensional manifold. The differential d on D is easily lifted to F , improving the grade from
[0;R] to [0;R+1]. We call it occasionally “ horizontal derivative " but it does not allow variational
calculus and we have introduced an second “ vertical " external exterior derivative D, different
fromd and commuting with it (see also [4]).

Here c and γ play the role of “ coordinates " in M . We have defined the two basic partial
derivative operators ∂c =

∂

∂c and ∂γ = ∂

∂γ
. The general vector-field V = V c ∂

∂c +V γ ∂

∂γ
, with

components V c and V γ ∈F , acts as a derivation on the Hmaps. We write X (M ) for their set.
The generalized multi-vector-field is defined through antisymmetric tensor product.

The basis one-forms Dc and Dγ are defined through their actions on vector-fields. The general
one-form α = αc Dc+αγ Dγ has components αc and αγ ∈F . We write Ω1(M ) for their set. The

(vertical) exterior derivative of an arbitrary [0;R]–Hmap F , DF
de f
= Dc ∂F

∂c +Dγ
∂F
∂γ
, is called of

type [1;R]. The wedge product of forms, ∧ is the antisymmetrized tensor product, as usual (not to
be confused with the wedge product in D , always implicit here). This defines Ω(M ).

3. Lagrangian Dynamics

The details may be found in [5]. The action involves the Lagrangian functional L . This
is a [0;n]–Hmap, with arguments a pair C = (c,dc), an r-history and its exterior derivative γ = dc.
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It returns the n-form L (C) on D , whose integral on D gives the action A (C). The historical

momentum is the type [0;n-r-1]–Hmap P
de f
= ∂L

∂dc , with same arguments. Then

DL = Dc
∂L

∂c
+D(dc) P = Dc (

δ ELL

δc
)−dΘ, (3.1)

where we defined the Euler-Lagrange derivative

δ EL·
δc

de f
=

∂ ·
∂c
− (−1)|c| d

∂ ·
∂ (dc)

, (3.2)

with |c|=grade of c; and the [1; n-1 ]–Hform

Θ
de f
= −Dc P = Dc

∂L

∂ (dc)
. (3.3)

Its (vertical) exterior derivation gives the closed [2; n-1]–Hform ω
de f
= DΘ = DP∧Dc . These

two historical Lagrangian forms become the historical symplectic potential and form in the non–
degenerate case.

An arbitrary variation of an history is seen as the action of a vector-field δ ∈X (M ), such
that δ dc = dδ c. Stationarity of the action implies the Euler-Lagrange equation

δ ELL

δc
= 0. (3.4)

It expresses in an explicitely covariant and condensed form any FT, including the case where the c
is a r-history (a form) rather than a function.

A vector-field δ is a symmetry generator when it does not modifies the action. This means
that it modifies L by an exact form dX only:

δc (
δ ELL

δc
)−d(δc P) = dX .

The Noether current (three-form) j
de f
= X + δc P, is conserved on shell: d j ' 0. This defines

locally the Noether charge density.

4. Hamiltonian dynamics

We call the affine dual of the first jet bundle j1Q, the multiphase space bundle 1 Y. Its bundle
manifold — that we write also Y — is the De Donder-Weyl multisymplectic manifold. We will
simply refer to it as to the phase space.

The (usual) Legendre transform transports the dynamics from V to Y. The historical Legendre
map,

TL : SV  SY
de f
= Sect(Y) : C = (c,dc) Y = (c,P),

1Different authors use various appellations for Y, or for its associated bundle manifold: the covariant phase space
bundle, the doubly extended phase space, the extended dual bundle [9], orthe extended multimomentum bundle [7] ...
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is the corresponding mapping of their sections 2: velocity-histories to Hamiltonian histories. To

any history c, it associates canonically the Hamiltonian history Y
de f
= (c,P), with P the historical

momentum defined above. We work now in the space SY
de f
= Sect(Y) of Hamiltonian histories,

were c and P play the role of coordinates.
We define the (historical) Hamiltonian functional (hereafter “ historical " means defined in SY )

H = Λ
i
Γi +P dc−L .

We have assumed possible constraints Γi, with associated Lagrange multipliers Λi; both being
Hmaps on SY . In this expression, dc and L must be expressed as functionals of c and P a far
as allowed by inversion of the Legendre map. We concentrate on the case without constraints
(constraints are treated in [5, 6]). The [0;n]–Hmap H admits arguments c and P, and returns an
n-form. We apply the differential calculus defined in [5].

We call the canonical [1;n-1] type form Θ
de f
= P dc the historical Poincaré-Cartan form (or

symplectic potential). Its exterior derivative is a (exact) [2;n-1]-form on SY ,

ω = DP∧Dc = (DPµ ∧Dc) Volµ ,

the historical symplectic form. It is the historical counterpart of the multisymplectic form with
three main differences:
- it is always a two-form and not a (n−1)–form;
- it is defined in the space of (Hamltonian) histories, not in phase space;
- its values are (n−1)–forms in D , not scalar functions.

The condition for a Hamiltonian history Y =(c,P) being a solution is expressed by generalized
Hamilton equations

dc =
∂H

∂P
; dP =−∂H

∂c
. (4.1)

This “ historical " version of the Hamilton–De Donder–Weyl equations is covariant. It applies to
tD as well to FT, it includes the case where the history is a form rather than a map. In [6], we apply
to electromagnetism and to first order general relativity.

Interestingly, 4.1 implies, on shell,

DH =
∂H

∂c
Dc+

∂H

∂P
DP' dc DP−dP Dc.

After derivation, DDH = 0 = Ddc DP−DdP Dc = dω : the historical symplectic form is con-
served on shell. This is the covariant version of the conservation of the symplectic current.

Integration of the [2;n-1]–form ω along any (n−1)-dimensional submanifold of D , provides
a [2;0] symplectic form (scalar-valued) on M . The on–shell conservation of ω implies that it does
not depend on the choice of the hypersurface (assumed Cauchy for FTs). This canonical symplectic
form on the space of solutions identifies with that introduced by [11]. Our result may be seen as a
generalization of that work.

2thanks to the fact that a fiber-preserving map between fiber bundles induces a map between their spaces of sections
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Since c and P play the role of the canonical “ variables ", the formula above suggests to define
the Poisson-like bracket of two Hmaps as

{ f ,g} de f
=

∂ f
∂c

∂g
∂P
− ∂g

∂c
∂ f
∂P

= X f yDg =−Xg yD f ,

where we have defined [6] the historical multisymplectic gradient as the historical vector field
X f ∈X (M ) obeying X f yω = D f . This requires that the quantities involved are well defined:
that both f and g have grades of greater or equal to those of c and P, namely r and n− r− 1; or,
alternatively, that they do not depend on the " canonical variables ". To illustrate, the identities

{P,c}= 1; {H ,c}= ∂H

∂P
= dc; {H ,P}=−∂H

∂c
= dP

validate the definition; our bracket appears as a generalization of that proposed by [3]. It applies to
Hmaps (not to functions) and this suggests to consider form-valued, rather than scalar-valued, ob-
servables; they provide scalar values after integration over a submanifold of convenient dimension.
This appears as a convenient point of view; it corresponds for instance to what is done in Loop
Quantum Gravity through the introduction of the Holonomy-Flux algebra.

By construction, an observable depends on histories, not on configuration – or phase–space
variables. Thus, even when reformulated as a function on phase space it depends on a whole
history only, which means that it remains constant during the evolution and commutes with the
Hamiltonian and with the constraints. Thus observables as defined here are Dirac observables, or
complete observables in the sense of [8, 1] (see also[10]).
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