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Local measurements of the Hubble expansion rate are affected by structures like galaxy clus-
ters or voids. Here we present a fully relativistic treatment of this effect, studying how clustering
modifies the dispersion of the mean distance (modulus)-redshift relation in a standard ΛCDM uni-
verse. Our findings is that cosmic variance (i.e. the effects of the local structure) is, for supernova
observations at small redshifts (0.01 < z < 0.1), of the same order of magnitude as the current
observational errors. The cosmic variance has to be taken into account in local measurements of
the Hubble expansion rate and it reduces the tension with the CMB measurement.
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1. Introduction

The Hubble constant, H0, determines the present expansion rate of the Universe. For most
cosmological phenomena a precise knowledge of H0 is of utmost importance. In a perfectly ho-
mogeneous and isotropic world H0 is defined globally. But the Universe contains structures like
galaxy clusters and voids. Thus the local expansion rate, measured by means of cepheids and su-
pernovae at small redshifts, does not necessarily agree with the expansion rate of an isotropic and
homogeneous model that is used to describe the Universe at the largest scales.

Recent local measurements of the Hubble rate [1, 2] are claimed to be accurate at the few
percent level, e.g. [1] finds H0 = (73.8±2.4) km s−1Mpc−1. In the near future, observational tech-
niques will improve further, such that the local value of H0 will be determined at 1% accuracy [3],
competitive with the current precision of indirect measurements of the global H0 via the cosmic
microwave backgound anisotropies [4].

The observed distance modulus µ is related to the bolometric flux Φ and the luminosity dis-
tance dL by (log≡ log10)

µ =−2.5log[Φ/Φ10 pc] = 5log[dL/(10 pc)]. (1.1)

The relation between the intrinsic luminosity, L, the bolometric flux, Φ, and the luminosity distance
dL of a source is Φ = L/4πd2

L. In a flat ΛCDM universe with present matter density parameter Ωm

the luminosity distance as a function of redshift z is given by

dL(z) =
1+ z
H0/c

∫ z

0

dz′√
Ωm(1+ z′)3 +1−Ωm

. (1.2)

As long as we consider only small redshifts, z≤ 0.1, the dependence on cosmology is weak, dL(z)'
c[z+(1−3Ωm/4)z2]/H0 and the result varies by about 0.2% when Ωm varies within the 2σ error
bars determined by Planck [4]. However, neglecting the model dependent quadratic term induces
an error of nearly 8% for z' 0.1.

The observed Universe is inhomogeneous and anisotropic on small scales and the local Hubble
rate is expected to differ from its global value for two reasons. First, any supernova (SN) sample is
finite (sample variance) and, second, we observe only one realization of a random configuration of
the local structure (cosmic variance). Thus, even for arbitrarily precise measurements of fluxes and
redshifts, the local H0 differs from the global H0. Sample variance was fully taken into account in
the literature, while cosmic variance was addressed in a fully relativistic way only recently in [5].

In the context of Newtonian cosmology, cosmic variance of the local H0 has been estimated
in [6, 7, 8, 9]. First attempts to estimate cosmic variance of the local Hubble rate in a relativistic
approach can be found in [10, 11] (see also [12]), based on the ensemble variance of the expansion
rate averaged over a spatial volume. It has been shown that this approach agrees very well with
the Newtonian one [10] and it predicts a cosmic variance which depends on the sampling volume
on the sub-per cent to per cent level. However, this approach still neglects the fact that observers
probe the past light-cone and not a spatial volume. Also, the measured quantity is not an expansion
rate, but a set of the bolometric fluxes and redshifts.

Here, we present the results obtained [5], where the first fully relativistic estimation of the ef-
fects of clustering on the local measurement of the Hubble parameter, without making any special
hypothesis about how the fluctuations can be modeled around us, was given. In [5], considering
only the measured quantities and the cosmological standard model with stochastic inhomogeneities,
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was studied the effect of cosmic structures on the local determination of H0, i.e., the light propaga-
tion effects were taken fully into account. Other relativistic approaches were proposed in [13, 14].
In [13] a "Swiss cheese" model was used in modeling the local Universe, in [14] a “Hubble bubble”
model was used and the perturbation of the expansion rate, which is not directly measurable, was
considered.

Following [5], we shall find that the contribution from clustering to the error budget of the
mean value of the Hubble parameter is typically 2 to 3%, hence as large as observational errors
quoted in the literature [1]. Finally, we shall find that even for an infinite number of SNIa within
0.01< z< 0.1 with identical redshift distribution compared to a finite sample considered, clustering
induces a minimal error of about 2% for a local determination of H0.

The paper is organized as follows. In Sec. 2 we consider the effect of local structure on the
error budget associated to the measurement of the local value of the Hubble parameter for a given
sample of SNe. Then, in Sec 3 we generalize this result to the case in which we have an infinite
number of SNe in our sample. Finally, we conclude in Sec. 4.

2. Cosmic Variance from local structure: finite SNe sample

Following [15, 16] one can use cosmological perturbation theory up to second order with an
almost scale-invariant initial power spectrum to determine the mean perturbation of the bolometric
flux from a standard candle and its variance.

Let us first consider the fluctuation of the mean on a sphere at fixed observed redshift z. We
denote the light-cone average [17] over a surface at fixed redshift by 〈· · · 〉, and a statistical average
by · · ·. Using the results of [18, 19, 20] (see also [21]) the fluctuation of the flux Φ ∝ d−2

L , away
from its background value in the Friedmann-Lemaître Universe (denoted by (dFL

L )−2), is given by

d−2
L = (dFL

L )−2 [1+Φ1/Φ0 +Φ2/Φ0] , (2.1)

where we expand Φ = Φ0 +Φ1 +Φ2 up to second order in perturbation theory. The ensemble
average of 〈Φ1/Φ0〉 vanishes at first order, but not at second order and must be added to another
second order contribution from Φ2/Φ0; we obtain (see, e.g. [16])

〈d−2
L 〉(z) = (dFL

L )−2 [1+ fΦ(z)] , (2.2)

where for z� 1

fΦ(z)'−
(

1
H (z)∆η

)2

〈(~vs ·~n)2〉 . (2.3)

Here ~n denotes the direction to a given SN and ~vs its peculiar velocity, η is conformal time,
∆η = η0−η(z) is the difference between the present time and the time at redshift z, and H is
the conformal Hubble parameter. We have removed the observer velocity since observations are
usually quoted in the CMB frame, corresponding to ~v0 = 0. A non-vanishing observer velocity
would nearly double the effect in Eq. (2.3).

The variance associated to the mean value of the flux in Eq.(2.2) is then given by [22]

σ
2
Φ = 〈(Φ1/Φ0)

2〉 , (2.4)

at low redshift we have the following dominant peculiar velocity contribution

σ
2
Φ ' 4

(
1

H (z)∆η

)2

〈(~vs ·~n)2〉 . (2.5)
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Finally, in Fourier space and using the dimensionless power spectrum of the Bardeen potential
today, Pψ(k) = (k3/2π2)|Ψk(η0)|2, we have

σ
2
Φ ' 4

(
1

H (z)∆η

)2
τ2(z)

3

∫ kUV

H0

dk
k

k2Pψ(k), (2.6)

where

τ(z) =
∫

ηs

ηin

dη
a(η)

a(ηs)

g(η)

g(η0)
.

g(η) is the growth factor and the source and the observer times are indicated with the suffix s and
0.

The approximate equalities in Eqs. (2.3) and (2.5) are valid for z� 1, where the first order
squared contribution of the peculiar velocity terms dominates over the other second order contri-
butions. For z ∼ 0.3 and larger, additional contributions notably due to lensing become relevant,
see [15, 16].

For measurements of the Hubble parameter, low redshift SNe are used in order to minimize
the dependence of the result on cosmological parameters. As a consequence, Eq. (2.5) is a good
approximations for the case here under investigation.

Hereafter we use the cosmological parameters from Planck [4], the linear transfer function
given in [23] taking baryons into account, and kUV = 0.1hMpc−1, see [16] for details. Increasing
the cut-off does not change the results here described due to two effects: the kernel k2Pψ(k) of the
peculiar velocity contribution decreases at large k and small scale fluctuations are incoherent (see
below) and their contribution to the variance decays like 1/N, where N is the number of supernovae.

The brightness of supernovae is typically expressed in terms of the distance modulus µ . On
the other hand, the induced theoretical dispersion on the bare value of H0, which is entirely due
to squared first order perturbations, is independent of the observable considered to infer H0. To
determine the dispersion of H0 from a sample of SNe we consider that at small redshift H2

0 '
c2z2/d2

L. H0 inferred from the observation of a single SN at redshift z� 1, is then expected to
deviate from the true H0 by approximately [22]

(∆H0)
2 =

H2
0

4
〈(Φ1/Φ0)

2〉 . (2.7)

In practice, observers do not have at their disposal many SNe at the same redshift, so the average
over a sphere cannot be performed. Hence, one has to go beyond this simplifying assumption.

Following [5], let us estimate the (ensemble) variance of the locally measured Hubble pa-
rameter H0 from the covariance matrix of the fluxes, given an arbitrarily distributed sample of N
observed SNe at positions (zi,~ni), which reads(

∆H0

H0

)2

=
1

4N2 ∑
i j

Φ1(zi,~ni)

Φ0(zi)

Φ1(z j,~n j)

Φ0(z j)

=
1

N2 ∑
i j

Vi j

H (zi)∆ηiH (z j)∆η j
, (2.8)

with

Vi j =τ(zi)τ(z j)
∫ kUV

H0

dk
k

k2Pψ(k)I
(
k∆η j,k∆ηi,(~ni ·~n j)

)
, (2.9)
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Figure 1: The redshift distribution of the 155 SNe of the CfA3+OLD sample [24, 25] with redshift within
0.01 and 0.1 considered here.

and

I(x,y,ν) =
1

4π

∫
dΩk̂eix(k̂·~ni)e−iy(k̂·~n j)(k̂ ·~n j)(k̂ ·~ni)

=
xy(1−ν2)

R2 j2(R)+
ν

3
[

j0(R)−2 j2(R)
]
, (2.10)

where ν = (~ni ·~n j) and R =
√

x2 + y2−2νxy = kd. Here d is the comoving distance between the
SNe at (zi,~ni) and (z j,~n j), j` denotes the spherical Bessel function of order ` and k̂ is the unit vector
in direction~k. To arrive at (2.10), one has to introduce the Fourier representation of Φ1(zi,~ni) =

2/(H (zi)∆ηi)~vs(~k) ·~ni and use some well known identities. Note that with I(x,x,1) = 1/3 and
Eq.(2.6), the auto-correlation term reproduces (2.7).

If the fluxes are perfectly coherent for all SNe so that Φ1(zi,~ni)Φ1(z j,~n j) = 4σ2Φ0(z j)Φ0(zi),
for all correlations, we obtain (∆H0/H0)

2 = σ2, while in the incoherent case, Φ1(zi,~ni)Φ1(z j,~n j) =

δi j4σ2Φ0(z j)Φ0(zi) we obtain (∆H0/H0)
2 = σ2/N. The reality lies somewhere in-between, wave-

lengths with kd < 1 being rather coherent while those with kd > 1 are rather incoherent.
In order to estimate the effect of the cosmic (co)variance for a realistic sample of SNe, we

consider the following set up. We calculate ∆H0/H0 from Eqs. (2.8) to (2.10) considering the
redshifts of a sample of 155 SNe selected to lie in the range 0.01 ≤ z ≤ 0.1 from the CfA3 and
OLD samples [24, 25]. The redshift distribution of the sample is shown in Fig 1.

For the redshift distribution of the 155 SNe of this sample, Eq. (2.8) yields a dispersion induced
by inhomogeneities between 2.2 and 3.3% for different angular distributions for the SNe. From
this range we infer [5]

∆H0 = (1.6÷2.4) km s−1Mpc−1 , (2.11)

with H0 as given in [1]. To obtain the result in Eq. (2.11) one has to keep ν constant to different
values and chose a random distribution of directions over one hemisphere. The different choices
give rise to the range quoted above. The smallest error corresponds to a random distribution of
directions over one hemisphere, while the largest one corresponds to the case where all SNe are
inside a narrow cone (ν ' 1).

Considering the quoted observational error of 2.4 km/s/Mpc [1] and the additional variance (2.11),
we obtain

H0 = [73.8±2.4± (1.6÷2.4)] km s−1Mpc−1. (2.12)

The tension with the Planck measurement [4], for which a value (H0)CMB = 67.3±1.2 km s−1Mpc−1

is reported, is reduced when taking this additional variance into account. In particular, adding the
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above errors in quadrature one obtains a deviation of 2.2 to 1.9σ from (H0)CMB, while the dif-
ference is 2.7σ when using the error quoted in [1]. This analysis is insensitive to smaller scales
fluctuations due to the incoherence of such contributions.

3. Cosmic Variance from local structure: infinite SNe sample

Following [5], let us now look at the ultimate error for an arbitrarily large sample when the
SNe are distributed isotropically over directions. In this case we can integrate I(x,y,ν) over all
directions. With

1
2

∫ 1

−1
dνI(x,y,ν) = j1(x) j1(y)

we then obtain [5] (
∆H0

H0

)2

=
∫ dk

k
k2Pψ(k)

(∫
dzτ(z)s(z)

j1(k∆η(z))
H (z)∆η(z)

)2

(3.1)

with
∫

dzs(z) = 1. Approximating the redshift distribution of the sample considered using an in-
terpolating function of the histogram in Fig 1, and integrating from z = 0.01 to 0.1, we obtain a
dispersion of about 1.8% which corresponds to an error of

∆H0 = 1.3 km s−1Mpc−1 . (3.2)

This is the minimal dispersion of a SN sample with a redshift space distribution given by the one
in Fig 1. It is not much smaller than the value obtained for the real sample. Interestingly, this result
is close to the ones obtained in [9, 10, 14], some of them with a very different analysis.

The errors from the nearby SNe with small ∆η(z) give the largest contribution. Therefore,
the dispersion can be reduced by considering higher redshift SNe for which, however, the model
dependence becomes more relevant. If we consider higher redshifts (close to or larger than 0.3), we
have to take into account also the other contributions to the perturbation of the luminosity distance,
see [18, 19, 20, 21] for the full expression. As it is well known (see, for example, [15, 16]), at
redshift z > 0.3, the lensing term begins to dominate.

4. Conclusion

To conclude, following [5] we have described the impact of stochastic inhomogeneities on the
error budget associated to the measurement of the local value of the Hubble parameter for a given
sample of standard candles. Eqs. (2.8) to (2.10) and (3.1) are the main result here described, namely
a general formula for the cosmic variance contribution to ∆H0 from a sample of SNe with z <∼ 0.2,
where the Doppler term dominates, and its limit for an arbitrarily large number of SNe isotropically
distributed over directions. This general formula can be easily implemented and does not require
an N-body simulation for each set of cosmological parameters. The required input are solely the
linear power spectrum and the distribution of the observed SNe in position and redshift space. In
particular, for samples presently under consideration, this error is not negligible but of the same
order as the experimental error, i.e. between 2.2 and 3.3%. This cosmic variance is a fundamental
barrier on the precision of a local measurement of H0. It has to be added to the observational
uncertainties and it reduces the tension with the CMB measurement of H0 [4].

Finally, even when the number of SNe is arbitrarily large, an irreducible error remains due to
cosmic variance of the local Universe. This error is about 1.8% for SNe with redshift 0.01< z< 0.1
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and a distribution given by the one in Fig.2 (see [5]). This can only be reduced by considering SNe
with higher redshifts, but if too high redshifts are included the result becomes strongly dependent
on other cosmological parameters like Ωm and curvature.
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