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1. Introduction

In recent years, the interest of experimental and theoretical studies in heavy ion collisions and
particularly the phase diagram of QCD grew rapidly. In facilities such as RHIC at BNL, ALICE
at LHC and CBM at the future FAIR facility experimentalists (will) search for possible signals of
phase transitions and a putative critical end point (CEP). On the theoretical side, calculations of the
discretized QCD on the lattice has established a crossover transition at small chemical potential,
see e.g. [1, 2] for Ny = 2+ 1 flavors. In our work we approach the QCD phase diagram with
the functional method of Dyson-Schwinger equations and put particular emphasis on the possible
influence of the charm quark on the phase structure of QCD [3]. One expects the contribution of
the charm quark to the equation of state starts to become significant around top LHC energies.
However, possibly even at smaller temperatures close or above the light-quark crossover region,
effects of charm quarks, although predicted to be small by perturbation theory [4], may not be
entirely negligible. Within lattice QCD preliminary results on calculations with Ny =2+ 1+ 1
flavors for transition temperatures and the equation of state using staggered [5, 6] and Wilson type
quarks [7] are available. Here we summarize recent results for the phase diagram at zero and finite
chemical potential within the non-perturbative framework of Dyson-Schwinger equations. At zero
chemical potential we compare with results from lattice QCD for the quark condensate and the
unquenched gluon propagator before we discuss our results for the phase diagram and the critical
end point for Ny =2+ 1 and Ny = 2+ 1+ 1 quark flavors.

2. Framework

Dyson-Schwinger equations (DSEs) are the equations of motion for the n-point functions of
QCD. In Fig. 1 we show the DSE for the quark propagator. This quark 2-point function is the
foundation of an infinite tower of coupled integral equations, which are in principle ab initio if
solved completely and self-consistently. Therefore the quark propagator would already hold all
the (exact) informations about the phase diagram of QCD. In practice, however, in most cases one
needs to impose a truncation using input from other sources such as symmetries, constraints or
other methods like lattice QCD.

The truncation used in this work has been developed over the past few years (see [8, 9, 10, 11, 3])
and consists of two key points. The first part of the truncation is depicted in Fig. 2, showing
the approximation in the DSE for the Landau gauge gluon propagator. In order to calculate this
quantity we use input from lattice QCD for the quenched gluon propagator (denoted by the yellow
dot), replacing diagrams with internal gluons and Faddeev-Popov ghosts. To this quantity we add
a quark loop for each flavor. In this simplification of the gluon DSE we neglect all the second
order unquenching effects in the Yang-Mills diagrams, but it is ensured that we take the important
temperature effects of the quenched gluon propagator into account. Additionally the unquenched
gluon propagator inherits a dependence on the temperature and the chemical potential via the quark
loops, giving a contribution to the thermal mass, which agrees well with predictions from hard-
thermal-loop perturbation theory for high temperatures. The gluon propagators at finite temperature
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Figure 1: The quark Dyson-Schwinger equation. Figure 2: The truncated gluon
Dyson-Schwinger equation.

T and quark-chemical potential u is given by
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with momentum p = (®,, p), @, = 2nxT for bosons. The projectors PébT are longitudinal (L) and
transverse (T) with respect to the heat bath and given by

Pap
Pgﬁ = (1 —6a4) (1 - 6[34) (505[3 - y) ) 2.2)
Pl = Pap—Pap, (2.3)

where Py is the transverse projector with respect to the four momentum.

The second element of our truncation is an approximation for the full quark-gluon vertex. Infor-
mation on this vertex can be gathered from lattice QCD or from solutions of its DSE. Correspond-
ing studies at zero temperature and chemical potential are in progress, for recent works see e.g.
[13, 14] in the DSE framework and [15, 16] in the functional renormalization group approach. At
finite temperature, however, information from these sources is not yet available. We therefore use a
functional form for this vertex which combines information from the well-known perturbative be-
havior at large momenta and an approximate form of the Slavnov-Taylor identity at small momenta
studied long ago by Ball and Chiu [17]. The explicit form of this approximate expression for the
quark-gluon vertex is discussed in Refs. [9, 10, 3] and shall not be repeated here for brevity. It
contains one open parameter, called d; in the following, which controls the infrared strength of the
vertex and sets the temperature scale for in-medium calculations. Furthermore, via the Ball-Chiu
construction, it contains dressing functions of the two attached quarks. Therefore our ansatz for the
quark-gluon vertex is flavor, as well as temperature and chemical potential dependent. The con-
struction of the quark-gluon vertex additionally ensures to keep the multiplicative renormalizability
of our equations.

To investigate the influence of the charm quark, we developed two approaches to set the IR-strength
of the quark-gluon vertex as well as the physical masses of the quarks. The first one (called Sets
Apy) connects our calculations to lattice QCD, since the IR-strength and light-quark mass is fixed
to reproduce the (pseudo-) critical temperature 7c ~ 155 MeV from [1] for Ny=2+1 flavors at zero
chemical potential. Since in a crossover region there are different definitions of a critical temper-
ature, we point out that the chosen one is defined via the inflection point of the chiral condensate
to match the definition used in [1]. The mass of the strange quark is chosen to be 27 times the
light-quark mass. To this setup we merely added a charm quark with a mass of 300 MeV at a
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renormalization point of 80 GeV, without adjusting the IR-strength. In our second approach (called
Sets Byy) we set the IR-strength in the quark-gluon vertex and the physical quark masses self-
consistently by fixing the pion decay constant, as well as the pion, kaon and 1¢ mass in the very
same truncation via the Bethe-Salpether equation, separately for Ny=2+1 and Ny=2+1+1. This was
possible due to recent progress in the Bethe-Salpether framework [12]. To describe the (pseudo-)
critical temperature of our system, we calculate the chiral condensate

3
) =ZZNT Y [ S 2T [s(0), 2.4)
) (27)
where S/ (p) is the calculated quark propagator for flavor f, Zg and ZJ, are the corresponding wave-
function and quark mass renormalization constants, respectively, and N, = 3 is the number of
colors. Due to the behavior of the quark massfunction in the ultraviolet, any quark flavor with
non-zero bare quark mass leads to a condensate which is quadratically divergent and needs to be

regularized. In order to cancel this divergence one defines the regularized chiral condensate
_ mp, _
Ars = (W) — (YY) (2.5)
A

The quantity A; ((T')/A; (T = 0) can therefore be considered as an order parameter for the chiral
transition. In our work we extract T¢ either by considering the maximum of the derivative of this
quantity with respect to temperature (inflection point) or with respect to the mass of the light quarks
(chiral susceptibility).

3. Results

In this section we show the results calculated within the framework discussed in the previous
section. In Fig. 3 we compare the electric (longitudinal) part of the gluon propagator for N =2 and
a pion mass of 316 MeV with lattice data from [18]. The parameter d; and the physical quark mass
are fixed in the manner of Set B. Note that our result, determined first in [10], has been a predic-
tion, verified later by the lattice results. Therefore the quite good agreement for the unquenched
gluon, featuring an inversion of the temperature ordering when going from the quenched to the
unquenched case, serves as a further justification for our truncation scheme. In Fig. 4 the same
quantity is shown, in this case for Set A;+|. We observe the same inversion of the temperature
ordering as well as the suppression of the maximum after the unquenching. In Fig. 5 we show the
regularized chiral condensate at =0 MeV for all sets of interest, compared to lattice data taken
from [1]. We observe a very good agreement of Set A, (dashed red line) with the lattice data,
not only in the scale (7¢, controlled by the choice of d; as shown in Fig. 6) but also in the steepness
of the regularized condensate, which is a non-trivial result. Additionally we find that by merely
adding the charm quark in Set A (dash-dotted blue line), the curve is shifted towards lower tem-
peratures. This is an effect caused by adding the charm quark to the system without adjusting the
physical scale (d;). To investigate the physical content of this behavior, we consider the Sets B
(solid black line), where we find that by self-consistently readjusting the scale, the charm quark
has no visible effect.

Fig. 7 shows the phase diagrams for Sets B. It immediately becomes apparent, that the negligible
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Figure 3: Electric part of the gluon
dressing functions for Ny=2, mz=316 MeV.
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Figure 5: A;; at u=0 MeV [3].
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Figure 4: Electric part of the gluon
dressing functions for Set A, .
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Figure 6: Influence of di on Ay .

contribution of the charm quark which we observed for u=0 MeV in Fig. 5, continues to be small
for the whole T-u-plane for both, chiral and deconfinement transition. The deconfinement transi-
tion was fixed via the Polyakov loop of the minimum of the background field potential (see [11]
for more details), where the inflection point is used. On the other hand, the critical temperature in
the chiral crossover region was defined by the maximum of the chiral susceptibility. This partly
explains the gap for small chemical potential between the crossover lines. The results in Fig. 7 sug-
gest that there is almost no influence of the charm quark on the transition temperatures, provided
the internal scales are controlled by external input. For the prediction of the QCD phase diagram
shown in Fig. 8 we therefore return to lattice input (Set A, ). In this plot, the critical temperature
for the crossover region is in both cases, chiral and deconfinement transition, defined by the inflec-
tion point method. One can see, that the chiral crossover (dashed black line) becomes ever steeper

with increasing chemical potential and turns into a critical end point (CEP) at

(T, 1) = (115,168) MeV.

3.1

To guide the eye we added lines for pp/T=2 and pp/T=3 as well as predictions for the curvature of
the chiral transition line from lattice extrapolations for Ny = 2+ 1 of different groups at imaginary
and zero chemical potential into the real chemical potential region [19, 20, 21]. The agreement
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Figure 7: Phase diagram Sets B [3]. Figure 8: Phase diagram Set A, [3].

between the lattice extrapolation and our DSE results is quite satisfactory. We close with the
remark that potential effects of baryons onto the location of the critical endpoint have not yet been
taken into account, neither in the lattice extrapolations of the curvature, nor in our DSE approach.
In order to turn this qualitative study into a quantitative one, these effects need to be addressed.
Thus the close agreement of both approaches, although interesting, may very well not be the final
word.
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