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We consider complex saddle points in QCD at finite temperature and density, which are con-
strained by symmetry under charge and complex conjugations. This approach naturally incorpo-
rates color neutrality, and the Polyakov loop and the conjugate loop at the saddle point are real but
not identical. Moreover, it can give rise to a complex mass matrix associated with the Polyakov
loops, reflecting oscillatory behavior in color-charge densities. This aspect of the phase structure
appears to be sensitive to the origin of confinement, as modeled in the effective potential.
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1. Background

The phase structure of QCD at finite density and temperature is of fundamental importance,
and can be studied both experimentally and theoretically. Nevertheless, progress has been slow, in
part because of the sign problem, which afflicts both lattice simulations [1] and phenomenologi-
cal models [2]. The problem in QCD is due to the fact that the fermion determinant is complex
for typical gauge field configurations when the quark chemical potential µ is nonzero. In [3], we
have shown that the consideration of complex saddle points provides a conceptually cohesive phe-
nomenological model of QCD at finite T and µ . Moreover, we have identified a new property of
QCD at finite density, the occurrence of a disorder line, that may have observable consequences
in experiment and/or lattice simulation. Some feature associated with the disorder line differen-
tiate strongly between different phenomenological models, and may thus have an impact on our
understanding of confinement.

We consider an SU(N) gauge theory coupled to fermions in the fundamental representation. It
is well-known that the Euclidean Dirac operator has complex eigenvalues when a nonzero chem-
ical potential is introduced. This can be understood as an explicit breaking of charge conjugation
symmetry C . The log of the fermion determinant, logdet(µ,A), which is a function of the quark
chemical potential µ and the gauge field A, can be formally expanded as a sum over Wilson loops
with real coefficients. For a gauge theory at finite temperature, the sum includes Wilson loops that
wind nontrivially around the Euclidean timelike direction; Polyakov loops are examples of such
loops. At µ = 0, every Wilson loop TrFW appearing in the expression for the fermion determinant
is combined with its conjugate TrFW † to give a real contribution to path integral weighting. More
formally, charge conjugation acts on matrix-valued Hermitian gauge fields as

C : Aµ →−At
µ , (1.1)

where the overall minus sign is familiar from QED, and the transpose interchanges particle and
antiparticle, e.g., W+ and W− in SU(2). This transformation law in turn implies that C exchanges
the Wilson loop and the conjugate loop as shown in Fig. 1(a), so unbroken charge symmetry im-
plies a real fermion determinant. When µ 6= 0, Wilson loops with nontrivial winding number n
in the x4 direction receive a weight enβ µ while the conjugate loop is weighted by e−nβ µ as illus-
trated in Fig. 1(b), and thus invariance under C is explicitly broken. However, there is a related
antilinear symmetry which is unbroken: TrFW transforms into itself under the combined action of
C K , where K is the fundamental antilinear operation of complex conjugation. Thus the theory
is invariant under C K even in the case µ 6= 0. Note that K itself is also a symmetry of the theory
when µ = 0, but it is explicitly broken when µ 6= 0 for the same reason as C . C K symmetry is an
example of a generalized PT (parity-time) symmetry transformation [4]; theories with such sym-
metries form special class among theories with sign problems. Even though C K is a trivial trans-
formation for each Wilson loop, it implies the well-known relation det

(
−µ,Aµ

)
= det

(
µ,Aµ

)∗ for
Hermitian Aµ , because acting C on the fermion determinant is equivalent to changing µ to −µ as
one can see from Fig. 1, and acting K on the determinant simply gives the complex conjugation.
The advantage of using C K is that it is more general, leading to more insight into the sign problem
and applying to bosons as well as to fermions.
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(b) µ 6= 0

Figure 1: The Wilson loop trW and the Polyakov loop trP under the charge conjugation C and the complex
conjugation K .

For phenomenological models, the existence of C K symmetry leads naturally to the consid-
eration of complex but C K -symmetric saddle points. Typically, such models require the mini-
mization of some effective action Γ or effective potential Veff as a function of some set of fields.
We will consider models with effective potentials that are class functions of the Polyakov loop P,
depending only on the set of eigenvalues of P. C K symmetry will map any saddle-point con-
figuration A(1)

µ into another saddle point given by A(2)
µ = −A(1)†

µ with a corresponding connection
between the actions of the two configurations: S(2) = S(1)∗. However, some field configurations
are themselves C K -symmetric in that −A†

µ is equivalent to Aµ under a gauge transformation. If a
saddle point is C K symmetric, then its action and effective potential are necessarily real. A quick
direct proof can be given: For such a field configuration, it is easy to prove that every Wilson loop
is real and thus det

(
µ,Aµ

)
is real and positive for a C K -symmetric field configuration. If a single

C K -symmetric saddle point dominates the effective potential, then the sign problem is solved, at
least for a particular phenomenological model. Such C K -symmetric saddle points have been seen
before in finite density calculations [5].

Let us consider the Polyakov loop P, a special kind of Wilson loop, associated with some
particular field configuration that is C K -symmetric. We can transform to Polyakov gauge where
A4 is diagonal and time-independent, and work with the eigenvalues θ j defined by

P(~x) = diag
[
eiθ1(~x), · · · , eiθN(~x)

]
, (1.2)

where the θ j’s are here complex but satisfy ∑ j θ j = 0. Because we are primarily interested in
constant saddle points, we suppress the spatial dependence hereafter. Invariance under C K means
that the set

{
−θ ∗j

}
is equivalent to the

{
θ j
}

although the eigenvalues themselves may permute. In
the case of SU(3), we may write this set uniquely as

{θ − iψ,−θ − iψ,2iψ} . (1.3)

This parametrizes the set of C K -symmetric SU(3) Polyakov loops. Recalling the form of the
diagonal Gell-Mann matrices λ3 and λ8, we see that in Polyakov gauge θ 6= 0 corresponds to a
nonzero real value for A3

4, while ψ 6= 0 corresponds to a purely imaginary value for A8
4. Thus a

C K -symmetric saddle point requires analytic continuation of A8
4 along the imaginary axis. Notice
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that both

TrFP = eψ2cosθ + e−2ψ (1.4)

and

TrFP† = e−ψ2cosθ + e2ψ (1.5)

are real, but they are equal only if ψ = 0. In the usual interpretation of the Polyakov loop expec-
tation value, this implies that the free energy change associated with the insertion of a fermion is
different from the free energy change associated with its antiparticle. It is easy to check that the
trace of all powers of P or P† are all real, and thus all group characters are real as well.

The existence of complex C K -symmetric saddle points provides a fundamental approach to
non-Abelian gauge theories that is similar to the heuristic introduction of color chemical potentials,
and naturally ensures the system has zero color charge, i.e., all three charges contribute equally [6].
In the case of SU(3), extremization of the thermodynamic potential with respect to θ leads to the
requirement 〈nr〉− 〈ng〉 = 0 where 〈nr〉 is red color density, including the contribution of gluons.
Similarly, extremization of the thermodynamic potential with respect to ψ leads 〈nr〉+ 〈ng〉 −
2〈nb〉= 0. Taken together, these two relations imply that 〈nr〉= 〈ng〉= 〈nb〉.

We demand that any saddle point solution be stable to constant, real changes in the Polyakov
loop eigenvalues, corresponding for SU(3) to constant real changes in A3

4 and A8
4. Consider the

(N−1)× (N−1) matrix Mab, defined in Polyakov gauge as

Mab ≡ g2 ∂ 2Veff

∂Aa
4∂Ab

4
. (1.6)

At very high temperatures and densities, the eigenvalues of this mass matrix give the usual Debye
screening masses. The stability criterion is that the eigenvalues of M must have positive real parts.
At C K -symmetric saddle points, the eigenvalues will be either real or part of a complex conjugate
pair. In the case of SU(3), the matrix M may also be written in terms of derivatives with respect to
θ and ψ as

M =
g2

T 2

(
1
4

∂ 2Veff
∂θ 2

i
4
√

3
∂ 2Veff
∂θ∂ψ

i
4
√

3
∂ 2Veff
∂θ∂ψ

−1
12

∂ 2Veff
∂ψ2

)
. (1.7)

This stability criterion generalizes the stability criterion used previously for color chemical poten-
tials, which was ∂ 2Veff/∂ψ2 < 0. Crucially, the mass matrix Mab is invariant under M∗ = σ3Mσ3,
which is itself a generalized PT (parity-time) symmetry transformation [4]. It is easy to see that
this relation implies that Mab has either two real eigenvalues or a complex eigenvalue pair. In either
case, the real part of the eigenvalues must be positive for stability. In the case where there are two
real eigenvalues, we will denote by κ1 and κ2 the two positive numbers such that κ2

1 and κ2
2 are the

eigenvalues of the mass matrix Mab. If Mab has two complex eigenvalues, we define two positive
real numbers κR and κI such that (κR± iκI)

2 are the conjugate eigenvalues of Mab. The border
separating the region κI 6= 0 from the region κI = 0 is known as the disorder line. In this case, it
separates the region where the color density correlation function decays exponentially in the usual
way from the region where a sinusoidal modulation is imposed on that decay.
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2. Models

We now consider a class of phenomenological models that combines the one-loop result with
the effects of confinement for the case of SU(3) gauge bosons and two flavors of quarks at finite
temperature and density. The model is described by an effective potential which is the sum of three
terms:

Veff(P) =Vg(P)+Vf (P)+Vd(P). (2.1)

The potential term Vg(P) is the one-loop effective potential for gluons. The potential term Vf (P)
contains all quark effects, including the one-loop expression. The potential term Vd (P) represents
confinement effects. We will consider three different forms for Vf (P) and two different forms for
Vd (P) for a total of six different models. The formulas and parameters we use for these models can
be found in [3].

The potential term Vd(P) is taken to respect center symmetry and acts to favor the confined
phase at low temperature and density [7, 8]. The gauge contribution Vg(P) favors the deconfined
phase, and in the pure gauge theory (N f = 0) the deconfinement transition arises out of the compe-
tition between Vg(P) and Vd(P). The parameters of Vd(P) are set to reproduce the deconfinement
temperature of the pure gauge theory, known from lattice simulations to occur at Td ≈ 270MeV.
The specific forms used here are Model A and Model B of [7], which can be written as

V A
d (P) =

N

∑
j,k=1

(1− 1
N

δ jk)
M2

A
2β 2 B2

(
∆θ jk

2π

)
=

M2
AT 2

(
(2π−3θ)2−27ψ2

)
6π2 , (2.2)

V B
d (P) = − T

R3 log

[
∏
j<k

sin2
(

θ j−θk

2

)]
=− T

R3 log
[

1
4
{cosθ − cosh(3ψ)}2 sin2

θ

]
, (2.3)

where we have used the parametrization in Eq. (1.3). ∆θ jk =
∣∣θ j−θk

∣∣ are the adjoint Polyakov loop
eigenvalues and B2 is the second Bernoulli polynomial. The expression for Model A gives a simple
quartic polynomial in the Polyakov loop eigenvalues for Vg (P)+V A

d (P) and thus can be thought
of as a form of Landau-Ginsburg potential for the Polyakov loop eigenvalues. The parameter MA

controls the location of the deconfinement transition in the pure gauge theory, and is set to 596MeV.
On the other hand, the form for Model B is motivated by Haar measure, representing a determinant
term that tries to keep a space-time volume of order βR3 confined. In order to reproduce the correct
deconfinement temperature for the pure gauge theory, R must be set to R = 1.0028 fm. At low
temperatures, the potential Vd(P) dominates the pure gauge theory effective potential. The variable
ψ is zero, and Vd (P) is minimized when θ = 2π/3. For this value of θ , the eigenvalues of P are
uniformly spaced around the unit circle, respecting center symmetry, and TrFP = TrFP† = 0. As
the temperature increases, Vg (P) becomes relevant, and gives rise to the deconfined phase where
center symmetry is spontaneously broken. The addition of light fundamental quarks via Vf (P)
explicitly breaks center symmetry. For all nonzero temperatures, center symmetry is broken and
〈TrFP〉 6= 0. However, a remnant of the deconfinement transition remains in the form of a rapid
crossover from smaller value of TrFP to larger ones as T and µ are varied.

Although V A
d and V B

d appear to be very different, and are motivated in different ways, they are

5
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actually closely related. The confining potentials Vd can also be written as

V A
d =

M2
AT 2

2π2

∞

∑
n=1

1
n2 TrAPn, (2.4)

V B
d =

T
R3

∞

∑
n=1

1
n

TrAPn, (2.5)

up to some irrelevant constant for the latter case. Using TrAP= TrFPnTrFP†n−1, it is easy to prove
that minimizing either V A

d or V B
d yields a confining phase where TrFPn = 0 for all n 6= 0mod(N).

We consider three different cases of quarks with mass m. The first is heavy quarks, with a
fixed mass of 2 GeV. In this model, the quarks are essentially irrelevant for the deconfinement
transition, which occurs at essentially the same temperature as if no quarks were present at all.
The effect of spontaneous chiral symmetry breaking is not included, as it would only contribute a
small amount to the quark mass. This case is in some sense the simplest, and perhaps would be
the easiest for which to obtain reliable simulation results. The second case considered is massless
quarks, where the fermion mass is set equal to zero by hand. This case cannot be easily simulated
using lattice methods, because it ignores chiral symmetry breaking effects which do occur in lattice
simulations. It is thus useful only for sufficiently large values of T and µ such that chiral symmetry
is essentially restored. Our most realistic treatment of quarks uses a Nambu-Jona Lasinio four-
fermion interaction to model chiral symmetry breaking effects, so these models are of Polyakov-
Nambu-Jona Lasinio (PNJL) type [9].

3. Disorder lines in phenomenological models of QCD

We now show some results of the disorder lines, which are the borders separating the region
κI 6= 0 from the region κI = 0: see the last paragraph in Sec. 1. More results and discussions of the
disorder lines and the Polyakov loops at the C K -symmetric saddle point can be found in [3].

Figure 2 shows contour lines for ψ in the µ−T plane along with the region where κI 6= 0 as
well as the critical line for the PNJL model with Model A and Model B. In both models, the shaded
regions where κI 6= 0 cover a large portion of the phase diagram. While the critical line does not
depend much on the models, there is a striking difference in the disorder line. The critical line lies
completely within the region κI 6= 0 for Model A while it appeases to be a smooth continuation of
the critical line out of the critical end point for Model B. In both models, ψ is very small and a jump
in ψ is visible as the critical line is crossed. Figure 3 shows similar plots as Fig. 2 but with contour
lines for κI in the µ−T plane. κI jumps at the critical line only for Model A, because the critical
line lies on the disorder line for Model B. Comparison of the two figures shows that the peak in ψ

occurs at a lower value of µ than the peak in κI , with the peak in ψ occurring near (µ = 200 MeV,
T = 110 MeV) for Model A and (µ = 250 MeV, T = 140 MeV) for Model B.

The behavior of the disorder line for large T and µ for Model A is known analytically [3]:

T =
2µ√
3π

. (3.1)

This behavior is generic to Model A when T,µ � m, as one can see in Figs. 2-4. On the other
hand, there is no disorder line in the limit T,µ � m for Model B. This is consistent with the fact

6
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(a) Model A (b) Model B

Figure 2: Contour plot of ψ in the µ −T plane for the PNJL model. The region where κI 6= 0 is shaded.
The critical line and its endpoint are also shown.

(a) Model A (b) Model B

Figure 3: Contour plot of κI in the µ −T plane for the PNJL model. Contours are given in MeV, with αs

set to one.
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Figure 4: A comparison of the regions where κI 6= 0. There is no disorder line for the case of massless
quarks with Model B. High-T and low-T approximations are also shown for massless quarks.

7



P
o
S
(
C
P
O
D
2
0
1
4
)
0
6
8

Complex saddle points in finite-density QCD Hiromichi Nishimura

that there is no disorder line in the entire phase diagram for massless quarks with Model B. This
is the only case we have considered where there is no disorder line. Nevertheless, as shown in [3],
ψ is nonzero even in this case, with a peak value near the same point as in the PNJL model with
Model B. For heavy quarks, both models have the disorder line as can be seen in Fig. 4(b). Their
shape is very similar for smaller values of µ , suggesting that some universal behavior occurs in this
region. However, the behavior is very different in the region where both T and µ are becoming
large. Model A shows a continuation of the disorder line that follows the behavior for massless
quarks, while for Model B the disorder line covers a finite region in µ−T space. The overall shape
of the disorder line is similar to that found in the PNJL models, but of course shifted to a much
larger value µ .

4. Conclusions

As we have shown, the sign problem in QCD at finite density makes it very desirable to
extend real fields into the complex plane. This extension is certainly necessary for steepest descents
methods to yield correct results. Complex saddle points lead naturally to 〈TrP〉 6=

〈
TrP†

〉
, a result

that is much more difficult to obtain when fields are restricted to the real axis. The nature of these
saddle points are restricted by C K symmetry. The case of a single dominant saddle point is
particularly tractable in theoretical analysis. In the class of models we have examined, the saddle
point is not far from the real axis, as indicated by the small values of ψ and corresponding small
differences between 〈TrP〉 and

〈
TrP†

〉
. This is good news for lattice simulation efforts, as it

suggests only a modest excursion into the complex plane is needed. The small value of ψ also
indicates a small difference for thermodynamic quantities such as pressure and internal energy
between our work and previous work on phenomenological models where only real fields were
used. For all six cases studied here, the maximum value of ψ occurs in the region where quark
degrees of freedom are “turning on,” as indicated by crossover or critical behavior. In our previous
work on Model A for massless quarks [3], we were able to show analytically how ψ 6= 0 can arise
from the interplay of confinement and deconfinement when µ 6= 0. For the two PNJL models, it
is striking that the largest values of ψ occur near the critical end point. These predictions can be
checked in lattice simulations by the direct measurement of 〈TrP〉 and

〈
TrP†

〉
once sufficiently

effective simulation algorithms are developed.
In all six cases studied, ψ 6= 0 leads to two different eigenvalues for the A4 mass matrix. In

five of the six cases studied, a disorder line is found. This disorder line marks the boundary of the
region where the real parts of the mass matrix eigenvalues become degenerate as the eigenvalues
form a complex conjugate pair. In the PNJL models, the disorder line is closely associated with
the critical line. Inside the region bounded by the disorder line, the complex conjugate pairs gives
rise to color charge density oscillations. Patel has developed a scenario in which such oscillations
might be observed experimentally [10]. Our results indicate that the oscillations may have too large
a wavelength to be directly observable in experiment, although estimates based on phenomenolog-
ical models should be applied cautiously. The mass matrix eigenvalues are in principle accessible
in lattice simulations via the measurement of Polyakov loop correlation functions. A direct deter-
mination of κI may be difficult, but the disorder line itself could be determined from the merging
of the values of Re(κ1) with Re(κ2).

8



P
o
S
(
C
P
O
D
2
0
1
4
)
0
6
8

Complex saddle points in finite-density QCD Hiromichi Nishimura

While the behavior of the Polyakov loop and the chiral condensate, as determined by lattice
simulations, do not strongly differentiate between the two confining potential terms, Model A and
Model B, the corresponding two-point correlation functions do. The most physically relevant case
of PNJL models show both common features as well as clear differences in the behavior of the
disorder line between Model A and Model B. In both cases, the maximum value of κI occurs
slightly above and to the left of the critical end point in the µ − T plane, in the vicinity of the
region where the ratio TrFP†/TrFP is largest. In Model A, the critical line is contained within the
boundary of the disorder line, but in Model B the disorder line appears to come out of the critical
end point as a continuation of the critical line, a common behavior for disorder lines. Furthermore,
in Model A the disorder line continues diagonally in the µ −T plane for large µ and T , but for
Model B, the line bends over into the critical line. With Model A there is thus a possibility that
the effects of the disorder line might be visible in the results of the Compressed Baryonic Matter
(CBM) experiment at FAIR. The disorder line also strongly differentiates between Model A and
Model B in the case of heavy quarks, so lattice simulations of either light or heavy quarks that can
locate the disorder line have the potential to discriminate between the two models.
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