
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
2
4

Optimisation of Quantum Evolution Algorithms

Apoorva Patel∗

CHEP and SERC, Indian Institute of Science, Bangalore 560012, India

E-mail: adpatel@cts.iisc.ernet.in

Given a quantum Hamiltonian and its evolution time, the corresponding unitary evolution opera-

tor can be constructed in many different ways, corresponding to different trajectories between the

desired end-points. A choice among these trajectories can then be made to obtain the best com-

putational complexity and control over errors. As an explicit example, Grover’s quantum search

algorithm is described as a Hamiltonian evolution problem. It is shown that the computational

complexity has a power-law dependence on error when a straightforward Lie-Trotter discretisa-

tion formula is used, and it becomes logarithmic in error when reflection operators are used. The

exponential change in error control is striking, and can be used to improve many importance sam-

pling methods. The key concept is to make the evolution steps as large as possible while obeying

the constraints of the problem. In particular, we can understand why overrelaxation algorithms

are superior to small step size algorithms.
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Classical computer simulations of quantum systems are not efficient—well-known examples

range from the Hubbard model to lattice QCD—and Feynman argued that quantum simulations

would do far better [1]. The essence of the argument is that quantum simulations sum multiple

evolutionary paths (in superposition) contributing to a quantum process at one go, while classi-

cal simulations evaluate these paths one by one. Formalisation of this advantage for simulating

physical Hamiltonians, in terms of computational complexity, has improved over the years step by

step [2, 3, 4, 5, 6]. Here, treating Grover’s quantum search algorithm as a Hamiltonian evolution

problem, we expose the physical reasons behind the improvement in computational complexity.

Computational complexity of a problem is a measure of the resources needed to solve it.

Conventionally, the computational complexity of a decision problem is specified in terms of the

size of its input, noting that the size of its output is only one bit. Problems with different output

requirements are reduced to a sequence of decision problems, with gradually narrowing bounds on

the output adding one bit of precision for every decision made. In such a scenario, the number

of decision problems solved equals the number of output bits, and it is appropriate to specify the

complexity of the original problem in terms of the size of its input as well as its output. Generalising

the conventional classification, the computational algorithm then can be labeled efficient if the

required resources are polynomial in terms of the size of both its input and its output.

Popular importance sampling methods are not efficient according to our criterion, because the

number of iterations needed in the computational effort has a negative power-law dependence on

the precision ε (i.e. Niter ∝ ε−2 as per the central limit theorem). On the other hand, finding zeroes

of a function by bisection is efficient (i.e. Niter ∝ logε), and finding them by Newton’s method is

super-efficient (i.e. Niter ∝ log logε).

1. Quantum Hamiltonian Simulation

The Hamiltonian simulation problem is to evolve an initial quantum state |ψ(0)〉 to a final

quantum state |ψ(T )〉, in presence of interactions specified by a Hamiltonian H(t):

|ψ(T )〉=U(T )|ψ(0)〉 , U(T ) = P
[

exp
(
− i

∫ T

0
H(t)dt

)]
. (1.1)

Alternatively, the problem can be defined as determination of the evolution operator U(T ), without

any mention of the initial and the final states. The norm of the difference between the simulated

and the exact evolution operators specifies the simulation accuracy, say ||Ũ(T )−U(T )||< ε .

We restrict ourselves here to Hamiltonians acting in finite N-dimensional Hilbert spaces. A

general H(t) then be a dense N ×N matrix, and there is no efficient way to simulate it. So we

furthermore assume that H(t) the following features commonly present in physical problems:

(1) The Hilbert space is a tensor product of many components, e.g. N = 2m for a system of qubits.

(2) The components have only local interactions irrespective of the size of the system, e.g. only

nearest neighbour couplings. That makes H(t) sparse, with O(N) non-zero elements.

(3) H(t) is specified in terms of a finite number of functions, while the arguments of the functions

can depend on the components, e.g. the interactions are translationally invariant. That allows H(t)

to have a compact description, and consequently the resources needed to just write down H(t) do

not influence the simulation complexity.
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Such Hamiltonians can be mapped to graphs with bounded degree d, with vertices ↔ compo-

nents and edges ↔ interactions. Their simulations can be easily parallelised—on classical com-

puters, they allow SIMD simulations with domain decomposition. With these criteria, efficient

Hamiltonian simulation algorithms are those that use resources polynomial in log(N), d and log(ε).

1.1 Hamiltonian Decomposition

Efficient simulation strategy for Hamiltonian evolution has two major ingredients. The first

ingredient is to decompose the sparse Hamiltonian as a sum of non-commuting but block-diagonal

Hermitian operators, i.e. H = ∑l
i=1 Hi. Then each Hi can be easily and exactly exponentiated for

any time evolution τ , with exp(−iHiτ) retaining the same block-diagonal structure. Reducing the

block size all the way to 2× 2, the blocks become linear combinations of projection operators.

Projection operators with only two distinct eigenvalues can be interpreted as binary query oracles.

In general, Hi can be identified by an edge-colouring algorithm for graphs [3], with distinct

colours for overlapping edges. At most d + 1 colours are needed to efficiently colour any sparse

graph. Identification of Hi also provides a compressed labeling scheme that can be used to address

individual blocks. The number of blocks is O(m) = O(logN), and they can be evolved simultane-

ously, in parallel (classically) or in superposition (quantum mechanically).

For example, even and odd edges of a linear chain provide a block-diagonal decomposition

of the one-dimensional Laplacian operator, H = Ho +He. Its projection operator structure follows

from H2
o = 2Ho and H2

e = 2He. The last bit of the position label identifies Ho and He. Eigenvalues

of H are 4sin2(k/2) in terms of the lattice momentum k, while those of Ho and He are just 0 and 2.

1.2 Evolution Optimisation

Given that individual Hi can be exponentiated exactly and efficiently, their sum H can be

approximately but efficiently exponentiated using the discrete Lie-Trotter formula:

exp
(
− iHT

)
= exp

(
− i∑

i

HiT
)
≈
(
∏

i

exp(−iHi∆t)
)n

, n = T/∆t . (1.2)

This approximation retains unitarity of the evolution, but may not preserve other properties such as

the energy. The accuracy of the approximation is usually improved by decreasing ∆t. This method

has been used in classical parallel computer simulations of quantum evolution problems [7, 8].

In contrast, the second ingredient of efficient Hamiltonian simulation is to use as large ∆t as

possible. When the exponent is proportional to a projection operator, the largest ∆t is the one that

makes the exponential a reflection operator. Such an extreme strategy not only keeps the evolution

accurate but also improves the algorithmic complexity from a power-law dependence on ε to a

logarithmic one. This is not obvious, and we demonstrate it next for the quantum search problem.

2. Quantum Search as Hamiltonian Evolution

The quantum search algorithm works in an N-dimensional Hilbert space, whose basis vectors

{|i〉} are identified with the individual items. It takes the initial state |s〉 whose amplitudes are

uniformly distributed over all the items, to the target state |t〉 where all but one amplitudes vanish.

|ψ(0)〉= |s〉 , |ψ(T )〉= |t〉 , |〈i|s〉|= 1/
√

N , 〈i|t〉= δit . (2.1)
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The simplest evolution schemes taking |s〉 to |t〉 are governed by time-independent Hamilto-

nians that depend only on |s〉 and |t〉. The unitary evolution is then a rotation at a fixed rate in the

two-dimensional subspace, formed by |s〉 and |t〉, of the whole Hilbert space. In this subspace, let

|t〉=
(

1

0

)
, |t⊥〉=

(
0

1

)
, |s〉=

(
1/
√

N√
(N −1)/N

)
. (2.2)

There are many evolution routes with U(T )|s〉= |t〉, and we consider two particular cases in turn.

2.1 Farhi-Gutmann’s and Grover’s Algorithms

Grover based his algorithm on a physical intuition for the Hamiltonian [9], where the po-

tential energy term |t〉〈t| attracts the wavefunction towards the target state and the kinetic energy

term |s〉〈s| diffuses the wavefunction over the whole Hilbert space. Both the terms are projection

operators, and the time-independent Hamiltonian is

HC = |s〉〈s|+ |t〉〈t|= I +

√
N −1

N
σ1 +

1

N
σ3 . (2.3)

The corresponding evolution operator is (without the global phase)

UC(t) = exp
(
− in̂ ·~σ t/

√
N
)
, n̂ =

(√
(N −1)/N,0,1/

√
N
)T

, (2.4)

which is a rotation by angle 2t/
√

N around the direction defined by n̂ on the Bloch sphere.

The (unnormalised) eigenvectors of HC are |s〉±|t〉, They correspond to the directions ±n̂, and

bisect the initial and the target states. Thus a rotation by angle π around n̂ takes |s〉〈s| to |t〉〈t| on

the Bloch sphere, and the time required for the Hamiltonian search is T = (π/2)
√

N [10].

Grover made an enlightened jump from this scenario, motivated by the Lie-Trotter formula.

He exponentiated the projection operators in HC to reflection operators; R = exp(±iπP) = 1−2P

for any projection operator P. His optimal algorithm iterates the discrete evolution operator [11],

UG =−(1−2|s〉〈s|)(1−2|t〉〈t|) = (1− 2

N
)I +2i

√
N −1

N
σ2 . (2.5)

With UG = exp(−iHGτ), it corresponds to the Hamiltonian and the evolution step:

HG =
i√
N

(
|t〉〈s|− |s〉〈t|

)
= i

[
|t〉〈t|, |s〉〈s|

]
=−

√
N −1

N
σ2 , τ =

2N√
N −1

sin−1
( 1√

N

)
. (2.6)

It is an important non-trivial fact that HG is the commutator of the two projection operators in HC.

On the Bloch sphere, each UG step is a rotation by angle 2τ
√

N −1/N = 4sin−1(1/
√

N)

around the direction n̂G = (0,1,0)T , taking the geodesic route from the initial to the final state.

That makes the number of steps required for this discrete Hamiltonian search,

QT =
cos−1(1/

√
N)

2sin−1(1/
√

N)
≈ π

4

√
N . (2.7)

Note that n̂ and n̂G are orthogonal, so the evolution trajectories produced by rotations around

them are completely different, as illustrated in Fig.1. It is only after a specific evolution time,

corresponding to the solution of the quantum search problem, that the two trajectories meet.

To compare the rates of these two Hamiltonian evolutions, we observe that HC can be simu-

lated by alternating small evolution steps governed by |s〉〈s| and |t〉〈t|, according to the Lie-Trotter

formula. Then each evolution step governed by |t〉〈t| needs two binary queries [12]. On the other

hand, UG can be simulated using only one binary query per evolution step.
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|s〉

|t〉

|t⊥〉

n̂G
n̂

HG HC

Figure 1: Evolution trajectories on the Bloch sphere for the quantum search problem, going from |s〉 to |t〉.
The Hamiltonians HC and HG generate rotations around the directions n̂ and n̂G respectively.

2.2 Equivalent Evolutions

Two Hamiltonian evolutions are truly equivalent, when their corresponding unitary evolution

operators are the same (upto a global phase). The intersection of the two evolution trajectories is

then independent of the specific initial and final states. For the quantum search problem, we find

UC(T ) = i(1−2|t〉〈t|) (UG)
QT . (2.8)

For a general evolution time 0< t < T , we have the relation (similar to Euler angle decomposition),

UC(t) = exp
(
iβσ3

)
(UG)

Qt exp
(

i
(π

2
+β

)
σ3

)
, (2.9)

i.e. UC(t) can be generated as Qt iterations of the Grover operator UG, preceded and followed by

phase rotations. Here σ3 = 2|t〉〈t|−1 is a known reflection, and

Qt =
sin−1

(√
N−1

N
sin(t/

√
N)

)

2sin−1(1/
√

N)
≈ t

2
, β =−π

4
− 1

2
tan−1

( 1√
N

tan(t/
√

N)
)
. (2.10)

It is truly remarkable that HG can be used to obtain the same evolution as HC, even though the

two Hamiltonians are entirely different in terms of their eigenvectors and eigenvalues!

2.3 Discretised Hamiltonian Evolution Complexity

Digitisation of continuous variables is necessary for fault-tolerant computation with control

over bounded errors. But it also introduces discretisation errors that must be kept within specified

bounds. The algorithmic error of the Lie-Trotter formula depends on ∆t, which has to be chosen so

as to satisfy the total error bound ε on U(t). For the simplest discretisation scheme,

exp
(
− i

l

∑
i=1

Hi∆t
)
= exp

(
− iH1∆t

)
. . .exp

(
− iHl∆t

)
× exp

(
− iE(2)(∆t)2

)
, (2.11)

E(2) =
i

2
∑
i< j

[Hi,H j]+O(∆t) . (2.12)

For unitary operators X and Y , Cauchy-Schwarz and triangle inequalities give,

||Xn −Y n||= ||(X −Y )(Xn−1 + . . .+Y n−1)|| ≤ n||X −Y || . (2.13)

5
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So for the total evolution to remain within the error bound ε , we need

n||exp(−iE(2)(∆t)2)− I|| ≈ n||E(2)||(∆t)2 = t||E(2)||(∆t)< ε . (2.14)

With exact exponentiation of the individual terms Hi, the computational cost to simulate a single

time step ∆t, C , does not depend on ∆t. The complexity of the Hamiltonian evolution is then

O(nC ) = O
(

t2
( ||E(2)||

ε

)
C

)
. (2.15)

With superlinear scaling in t and power-law scaling in ε , this small ∆t scheme is not efficient.

Grover’s optimal algorithm uses a discretisation formula where exp(−iHi∆tG) are reflection

operators. The corresponding time step is large, i.e. ∆tG = π for Eq.(1.2) applied to Eq.(2.3). The

large time step introduces an error because one may jump across the target state during evolution

instead of reaching it exactly. Qt is not an integer as defined in Eq.(2.10), and needs to be replaced

by its nearest integer approximation ⌊Qt +
1
2
⌋ in practice. Since each time step provides a rotation

by angle α = 2sin−1(1/
√

N), and one may miss the target state by at most half a rotation step,

the error probability of Grover’s algorithm is bounded by sin2(α/2) = 1/N, independent of the

number of time steps. Since the preceding and following phase rotations in Eq.(2.9) are unitary

operations, this error bound applies to UC(t) as well. Thereafter, multiple runs of the algorithm and

selection of the result by majority rule can rapidly reduce the error probability. With R runs, the

error probability becomes less than 2R−1/N⌈R/2⌉, which can be made smaller than any prescribed

error bound ε . (In a drastic contrast, averaging the results of multiple runs would make the error

probability smaller than 1/(N
√

R) only.) The computational complexity of the evolution is thus

O(QtRCG) = O
( t

2

(
− 2logε

logN

)
CG

)
= O

(
− t

logε

logN
CG

)
. (2.16)

With linear scaling in time and logarithmic scaling in ε , this algorithm is efficient.

To complete the analysis, we note that a digital computer with a finite register size also pro-

duces truncation errors. With b-bit registers, the available precision is δ = 2−b. With all functions

approximated by accurate polynomials, and Euler angle decomposition reducing rotations about

arbitrary axes to rotations about fixed axes, an individual Hi can be exponentiated to b-bit precision

with O(mb3) effort. The number of exponentiations of Hi needed for the Lie-Trotter formula is nl,

which reduces to 2Qt for the Grover version. So with the choice nlδ = O(ε), i.e. b = Θ(log(n/ε)),

the truncation error becomes negligible compared to the discretisation error. The cost of a single

evolution step then scales as C = O(m(log(t/ε))3), which is efficient.

3. Extensions and Outlook

It is straightforward to extend the preceding results to other Hamiltonians consisting of only

two projection operators, e.g. the staggered Dirac operator for free fermions in any number of

dimensions [13]. For Hamiltonians that are linear combinations of more than two projection opera-

tors, e.g. three projection operators for the discretised Laplacian on the graphene lattice, successive

Hi can be added to the algorithm one by one in an inductive procedure. The resultant large ∆t evo-

lution is not exact, but it still has Θ(1) success probability for a suitable choice of ∆t. That keeps

the overall scaling of the evolution efficient, O
(
lt||H|| log(lt||H||/ε)C

)
[5, 6].
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Our construction of the efficient Hamiltonian evolution algorithm relies on: (1) simplification

of the Baker-Campbell-Hausdorff expansion for products of exponentials of projection operators,

and (2) conversion of the results to a digital form allowing selection of the best one by majority

rule. These algebraic properties are not specific to quantum computers; they can be incorporated

in and readily benefit traditional classical simulations of quantum systems. In particular:

(a) It is known that overrelaxation algorithms [14], based on evolution steps that are reflections

consistent with conservation laws, provide a much more efficient sampling of the configuration

space (measured in terms of the autocorrelation time) than the small step size Metropolis algorithm.

The analysis presented here provides an understanding of that observation.

(b) Many physical problems with periodic patterns are solved using the fast Fourier transform. The

block-diagonal decomposition provides a competitive real space method for solving them.

(c) Projection operator decomposition of the Hamiltonian can be easily found for quantum Monte

Carlo problems, and for molecular dynamics simulations using the Lie-Trotter formula in Euclidean

time. The remaining task is to find a useful large step size with high acceptance probability.

(d) Evaluations of functions other than exponentials may also simplify with the block-diagonal

projection operator decomposition. A case of particular interest is the evaluation of the fermion

determinant appearing in many physical problems.

Work on such applications is in progress.
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