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1. Introduction

In many relevant models, the configurations are divided intotopological sectors (for periodic
boundary conditions). This includes theO(N) models ind= (N−1), all the 2dCP(N−1) models,
2d and 4d Abelian gauge theory, and 4d Yang-Mills theories. The topology persists if we include
fermions, hence this class of models also includes the Schwinger model, QED and QCD.

In the continuum formulation, a continuous deformation of aconfiguration (at finite Euclidean
action) cannot change the topological chargeQ∈ Z. On the lattice there are no topological sectors
in this strict sense, but at fine lattice spacing the configurations of the above models occur in distinct
sectors with local minima, separated by boundary zones of higher action. Thus it is possible — and
often useful — to introduce topological sectors also in lattice field theory, although the definition
of Q is somewhat ambiguous. For theO(N) models that we are going to consider, the geometric
definition [1] has the virtue that it naturally provides integer values ofQ.

Most simulations in lattice field theory are performed with local update algorithms, such as
the Metropolis algorithm for spin models, the heat-bath algorithm for pure gauge theories, and
the Hybrid Monte Carlo algorithm for QCD with dynamical quarks. If there are well-separated
topological sectors, such simulations may face a severe problem: a Markov chain hardly ever
changesQ. Thus the simulation tends to get stuck in one topological sector for an extremely
long computation time. Such a tremendous topological auto-correlation time was observede.g.
by the JLQCD Collaboration in their QCD simulations with dynamical overlap quarks [2]. For
QCD simulations with non-chiral quarks (e.g.given by Wilson fermions) the problem has been
less severe so far,i.e. for lattice spacingsa& 0.05 fm that have typically been used. However, in
the future even finer lattices will be employed, and then thisproblem will become manifest.

So how can we measure the expectation value of some observable, 〈Ω〉, or the topological
susceptibilityχt =

1
V

(

〈Q2〉− 〈Q〉2
)

, if only topologically frozen simulations can be performed?1

Lüscher suggested open boundary conditions, soQ can change continuously [3]. This over-
comes the problem, but giving up integerQ has disadvantages, like losing the link to aspects of
field theory in the continuum,e.g.regarding theε-regime of QCD.

Here we investigate approaches where periodic boundaries,and thereforeQ ∈ Z, are pre-
served. In the framework of non-linearσ -models, we test methods to extract physical results from
Markov chains, which are permanently trapped in a single topological sector, hence numerical
measurements are available only at fixedQ. We start with a procedure to determineχt from the
correlation of the topological charge density, which was introduced by Aoki, Fukaya, Hashimoto
and Onogi [4]. Then we probe a way to assemble an expectation value 〈Ω〉 from topologically
restricted results〈Ω〉|Q|. That approach is based on the Brower-Chandrasekharan-Negele-Wiese
(BCNW) formula [5], which also yields an estimate forχt.

2. Correlation of the topological charge density

Ref. [4] derived an approximate formula for the correlationof the topological charge density
q, at topological charge±Q and large separation|x| (we now use lattice units),

〈q0 qx〉|Q|, |x|≫1 ≈−
χt

V
+

Q2

V2 . (2.1)

1V is the volume, and we will deal with parity symmetric models,where〈Q〉= 0.
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The derivation assumes〈Q2〉 to be large, and|Q|/〈Q2〉 to be small.2 Therefore we will limit our
considerations to the sectors with|Q| ≤ 2. We are going to consider the 1dO(2) model and the 2d
O(3) model, and the explicit condition for〈Q2〉= χtV will be tested.

In our simulations we use the Wolff cluster algorithm [7], which performs non-local cluster
updates. Hence we can also measureχt directly, which is useful for testing this method in view
of other models (in particular gauge theories), where no efficient cluster algorithm is available.
Preliminary results were anticipated in Ref. [8], and Ref. [9] presented before a related study (with
different densities) in 2-flavour QCD.

The 1dO(2) model, or quantum rotor, describes a free quantum mechanical scalar particle
on the circleS1. We use periodic boundary conditions in Euclidean time overthe sizeL. The
continuum formulation deals with an angleϕ(x), whereϕ(0) = ϕ(L). The lattice variables are the
anglesϕx, x= 1, . . .L, with ϕ1 = ϕL+1. We define the nearest site difference as

∆ϕx = (ϕx+1−ϕx) mod 2π ∈ (−π,π] , (2.2)

i.e. the modulus function acts such that it minimises the absolute value. This yields the (geometri-
cally defined) topological charge densityqx and the topological chargeQ,

qx =
1

2π
∆ϕx , Q=

L

∑
x=1

qx ∈ Z . (2.3)

We now give the continuum action and the three lattice actions — standard action, Manton
action [10] and constraint action [11] — that we studied,

Scontinuum[ϕ ] =
β
2

∫ L

0
dxϕ̇(x)2 , Sstandard[ϕ ] = β

L

∑
x=1

(1−cos∆ϕx) ,

SManton[ϕ ] =
β
2

L

∑
x=1

∆ϕ2
x , Sconstraint[ϕ ] =

{

0 ∆ϕx < δ ∀x
+∞ otherwise

. (2.4)

The parameterβ corresponds here to the moment of inertia, andδ is the constraint angle. The
continuum limit is attained atβ → ∞ and δ → 0, respectively. In the limitL → ∞, χt and the
correlation lengthξ are known analytically for all four actions in eqs. (2.4) [6,11].

Figures 1 and 2 show results for the standard action, the Manton action and the constraint
action at different sizesL and parametersβ andδ . They are all in excellent agreement with the
prediction based on eq. (2.1) (horizontal lines), even downto 〈Q2〉< 1.

Next we address the 2dO(3) model, or Heisenberg model, on square lattices of sizeL× L,
with classical spins~ex ∈ S2. Here we simulated the standard action and the constraint action, which
are analogous to the formulations (2.4),

Sstandard[~e] = β ∑
x,µ

(1−~ex ·~ex+µ̂ ) , Sconstraint[~e] =

{

0 ~ex ·~ex+µ̂ > cosδ ∀x, µ = 1,2
+∞ otherwise

. (2.5)

Also here we use the geometric definition of the topological charge, which is written down explic-
itly in Ref. [11]. Figure 3 shows results for the topologicalcharge density correlation. Again the
comparison to the prediction (2.1) works in all cases (in this context we don’t have to worry about

2Actually this formula also involves akurtosisterm (which vanishes for GaussianQ-distributions). However, its
contribution is negligible in all examples that we considered, so here we skip that term.
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Figure 1: The topological charge density correlation over a separation ofx lattice spacings for the standard
action (on the left) and for the Manton action (on the right),both atL = 100 andβ = 2. This implies
ξ = 2.779,〈Q2〉 = 1.936 forSstandard, andξ = 4.000,〈Q2〉 = 1.266 forSManton. For comparison, we show
the prediction based on eq. (2.1), where we insert the measured values ofχt .
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Figure 2: The topological charge density correlation over a separation ofx lattice spacings for the constraint
action atδ = 2π/3, L = 50 (on the left, withξ = 1.132,〈Q2〉 = 1.852), andδ = 1, L = 100 (on the right,
with ξ = 5.793,〈Q2〉= 0.844). Again we compare with the prediction (2.1), using the measuredχt.

the fact thatχt · ξ 2 diverges logarithmically in the continuum limit). However, we also observe
that for increasing volume it becomes soon difficult to resolve a clear signal from the statistical
noise (as required for the determination ofχt), even with the huge statistics provided by the cluster
algorithm. The quantitative results will be given in Ref. [13].

Thus we confirm that formula (2.1) is a valid approximation over a broad set of parameters.
Nevertheless, in view of 4d quantum field theory its application is not promising, since for large
volume it becomes very statistics demanding. That limitation is in agreement with the conclusion of
an earlier study in the 2-flavour Schwinger model with dynamical overlap hypercube fermions (and
with the plaquette gauge action) [12]: atβ = 5,V = 16×16 and fermion massesm= 0.01. . .0.06
a statistics ofO(1000) configurations in one topological sector was insufficient todetermineχt in
this way; to achieve this to about 2 digits would take at leastO(105) configurations.

3. Applications of the BCNW formula

We now turn to the more ambitious goal of evaluating an observable 〈Ω〉, when only some
values〈Ω〉|Q| — at various|Q| and volumes — are available. To this end, we use an approximate
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Figure 3: The topological charge density correlation in the 2dO(3) model onL×L lattices for the standard
action atβ = 1 (above,ξ ≃ 1.3; 〈Q2〉 = 2.46 atL = 12 and〈Q2〉 = 4.39 atL = 16) and for the constraint
action atδ = 0.55π (below,ξ ≃ 3.5; 〈Q2〉= 0.63 atL= 16 and〈Q2〉= 2.86 atL= 32). Due to the definition
of the topological charge density, we proceed in separationsteps of 2 lattice spacings. In all cases, we show
for comparison the prediction based on eq. (2.1), with the measured values ofχt. It works well, even at
〈Q2〉 = 0.63 the result is reasonable, although slight deviations from the prediction show up. But the last
plot illustrates that for increasing volume the signal get lost in the statistical noise.

formula, which was derived in Ref. [5],

〈Ω〉|Q| ≈ 〈Ω〉+
c

Vχt

(

1−
Q2

Vχt

)

. (3.1)

Our input are measured values for the left-hand-side in various|Q| andV, and a fit determines〈Ω〉,
χt andc, where the former two are of interest. We refer to a regime of moderateV, where these
three quantities practically take their infinite-volume values, but the〈Ω〉|Q| are still well distinct.

This is the beginning of an expansion in 1/〈Q2〉, hence〈Q2〉 should be large, but what that
means has to explored numerically. Moreover the assumptionof a small value of|Q|/〈Q2〉 is
involved again (see also the re-derivation in Ref. [12]), hence we only use sectors with|Q| ≤ 2.
An extended expansion has been mentioned in Ref. [5] (first work), and explored in great detail
in Refs. [14–16]. It involves further free parameters, and the crucial question if this improves the
results for〈Ω〉 andχt was addressed in Refs. [14–16], and will be discussed further in Ref. [13].

As our observables we consider the action densitys= 〈S〉/V and the magnetic susceptibility

5
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Figure 4: The action densitys= 〈S〉/V for the 2dO(3) model onL× L lattice (standard action,β = 1,
ξ ≃ 1.3), and the magnetic susceptibility with the constraint action atδ = 0.55π (ξ ≃ 3.6). We display the
values measured in all sectors, and restricted to|Q|= 0, 1 or 2.

χm = 〈~M2〉/V (where ~M = ∑x~ex is the magnetisation, and〈~M〉 =~0). Results for the 2dO(3)
model inV = L×L are shown in the plots of Figure 4, which reveal the aforementioned regimes
of “moderateV”. The fitting results involving the sectors|Q|= 0, 1, 2, and various ranges inL in
those regimes, are given in Table 1. In particular we see an impressive precision of the values for
χm, and also the fitting results forsandχt are quite good.

Standard action directly measured
fitting range forL 16 − 24 16 − 28 16 − 32 in all sectors atL = 32

s 1.24038(12) 1.24027(8) 1.24015(5) 1.24008(5)

χt 0.0173(6) 0.0169(5) 0.0164(5) 0.01721(4)

Constraint action directly measured
fitting range forL 48 − 64 48 − 96 48 − 128 in all sectors atL = 128

χm 36.56(4) 36.58(3) 36.57(2) 36.57(2)

χt 0.00262(17) 0.00256(16) 0.00259(14) 0.002790(5)

Table 1: Above: the action densitys= 〈S〉/V extracted from fits to the BCNW formula (3.1), at|Q| ≤ 2
and various ranges of theL. For L ≥ 16 the directly measureds stabilises. It is close to the fitting results.
Below: the susceptibilitiesχm andχt, extracted from fits in various ranges of theL. ForL ≥ 48 the directly
measuredχm stabilises, and the results in distinct sectors converge quite well aroundL = 96. . .128. The fits
in moderate volumes lead to extremely precise values forχm. For both observables, also the fitting results
for χt are correct within less than 2σ .

4. Conclusions

In simulations with local update algorithms and fine lattices, the Monte Carlo history tends to
be confined to a single topological sector for an extremely long (simulation) time. This rises ques-
tions about the ergodicity (even within one sector). Here wedo not address this conceptual issue;
we trust the topologically restricted measurements of〈Ω〉|Q|, and try to interpret them physically.

In very large volumesV, the restricted expectation values all coincide with the physical result,
〈Ω〉|Q| ≡ 〈Ω〉, cf. eq. (3.1), but in practical simulations such large volumes are often inaccessible.
For smallerV, where〈Ω〉 is well converged to its large-V limit, but the〈Ω〉|Q| are still significantly
distinct, the BCNW formula (3.1) often allows us to determine 〈Ω〉 to a good accuracy, and it also

6
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provides useful results forχt. It is favourable to employ only the sectors with|Q| ≤ 2, and (roughly
speaking) the method is successful if〈Q2〉& 1.5.

If we relax that requirement to〈Q2〉& 2/3, we can still measureχt from the topological charge
density correlation〈q0 qx〉|Q|. The (theoretical) condition of a large separation|x| turns out to be
harmless in practice, but for increasingV the wanted signal decreases very rapidly. Therefore that
method is hardly promising for 4d models, where — in reasonable volumes — the signal would
most likely be overshadowed by statistical noise.

On the other hand, the BCNW formulais promising for applications in QCD, where typical
simulations take place at〈Q2〉= O(10). This observation is supported by studies in the Schwinger
model [12, 15, 17], the quantum rotor with a potential [14] and in 4d SU(2) gauge theory [16],
which will be reported in detail in Ref. [13].
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