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We present a study of spectroscopy ofSU(4) lattice gauge theory coupled to two flavors of Dirac

fermions in the anti-symmetric two index representation. The fermion representation is real,

and the pattern of chiral symmetry breaking isSU(2N f ) → SO(2N f ) with N f flavors of Dirac

fermions. It is an interesting generalization of QCD, for several reasons: it allows direct explo-

ration of an alternate largeNc expansion, it can be simulated at non-zero chemical potential with

no sign problem, and several UV completions of composite Higgs systems are built on it. We

present preliminary results on the baryon and meson spectraof the theory and compare them with

SU(3) results and with expectations for largeNc scaling.
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1. Introduction

The authors of this paper are involved in a diverse set of projects involvingSU(4) gauge theory
with various numbers of flavors of degenerate mass fermions in the two-index antisymmetric (AS2)
representation of the gauge group, which is a sextet forSU(4). These systems are interesting for a
variety of reasons:

First, they are confining and chirally broken systems with similarities to ordinaryNc = 3 QCD.
In fact, there is an alternate large-Nc limit of ordinary QCD in which the fermions live in an AS2
representation. ForNc = 3, AS2 quarks inhabit thē3 representation. The story goes back to [1]. It
reappears in more modern guises in, for example, [2, 3]. Lattice simulation can test the expected
large-Nc regularities, as it has for the usual ’t Hooft limit of fixedN f fundamental representation
fermions at varyingNc. (An assortment of recent results includes [4, 5].)

Next, they form a chirally broken system with some differences compared to ordinaryNc = 3
QCD. Because the fermions are in a real representation of thegauge group, the pattern of chiral
symmetry breaking is notSU(N f )⊗ SU(N f ) → SU(N f ); it is SU(2N f ) → SO(2N f ) (all for N f

flavors of Dirac fermions) [6]. The reality of the representation allows quarks and antiquarks to
mix under global flavor rotations. In particular, theN f = 2 theory has nine Goldstone bosons,
which may be classified as isospinI = 1 triplets ofqq̄, qq, andq̄q̄.

Third, reality of the representation means that finite density simulations do not suffer from a
sign problem. This is similar to the situation forNc = 2 with fundamental representation fermions
[7]. There is a literature of predictions forSU(4) [8], which we can explore.

Finally, members of this family play a role in composite Higgs studies. For example, the
Littlest Higgs model [9] relies on the non-linear sigma model SU(5)/SO(5). Examples of proposed
SU(4) UV completions of composite Higgs models, mostly involving5 Majorana fermions, are
given in Refs. [10].

In this note we describe results relevant to the first of thesepoints. The details of the calcula-
tions will be presented in our longer paper [11].

2. Lattice setup and observables

We use the usual Wilson plaquette gauge action and Wilson-clover fermions with nHYP
smeared links as the gauge connections. The bare gauge coupling g is defined throughβ = 2Nc/g2.
The bare quark massm is introduced through the hopping parameterκ . The clover coefficient is
fixed at its tree level value,csw = 1.

Simulations were done at four differentκ values at a bare couplingβ = 9.6. The lattice volume
is fixed to be 163 × 32. In addition, we calculated spectroscopy at four more partially quenched
(PQ) points based on one dynamical data set.

Our large-Nc comparisons are done against simulations ofSU(3) gauge theory withN f = 2
fundamental fermions. Five differentκ values were used at one fixed gauge coupling. Previously
generated quenchedSU(Nc) theories, withNc = 3, 5, and 7 are also used for comparison [12]. All
these data sets had the same volume, 163×32. For comparison among different theories, we fix the
lattice spacings usingr1, the shorter version [13] of the Sommer [14] parameter, defined in terms
of the forceF(r) between static quarks:r2F(r) =−1.0 atr = r1.
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The pseudoscalar and vector meson decay constantsfPS and fV are defined below in Eqs. (2.1)
and (2.2); and the quark massmq is defined from the axial Ward identity (AWI) Eq. (2.3).

〈0|ūγ0γ5d|PS〉= mPS fPS, (2.1)

〈0|ūγid|V 〉= m2
V fV εi, (2.2)

∂t ∑
x
〈Aa

0(x, t)O
a〉= 2mq ∑

x
〈Pa(x, t)Oa〉 . (2.3)

Aa
µ = ψ̄γµγ5(τa/2)ψ is the axial current,~ε is a polarization vector,Pa = ψ̄γ5(τa/2)ψ is the pseu-

doscalar density, andOa is a source. In our normalization conventionfPS ≈ 132 MeV. In Eqs. (2.1)
and (2.2), the lattice decay constants need to be renormalized by a field rescaling and the corre-
spondingZ factors to get the continuum quantities. For the pseudoscalar decay constant, we have

f cont
PS =

(

1− 3
4

κ
κc

)

ZPS f latt
PS . (2.4)

There is a similar equation for the vector case. For our case,theZ factors are close to unity [11, 15].

3. Phase diagram

Before computing spectroscopy, we have to map out the phase structure of the system in the
(β ,κ) plane. The result is shown in Fig. 1. It is a bit complicated. Here are the ingredients:

Running along the top right side of the figure is theκc line, where the AWI quark mass van-
ishes. The steeply falling line on the left is a bulk transition. It appears to be first order out to
β = 9.7, and then seems to turn into a crossover. When it is first order, the quark mass jumps
discontinuously. We believe that theκc line disappears when it encounters this transition, so thatat
sufficiently strong coupling there is no zero quark mass point for this lattice action.

The region between the two lines contains the desired confining and chirally broken phase. We
did simulations on asymmetric lattices and observed finite temperature transitions from a confined
to a deconfined phase. These lines move to biggerβ as the temporal size of the lattice increases.
We wanted to simulate at lattice spacings which were neithertoo large or too small. We settled on
a line varyingκ at β = 9.6.

4. Large Nc scaling tests

We computed the masses of the pseudoscalar and vector mesonsand their decay constants, and
the masses ofJ = 0 andJ = 1 diquark states, which were degenerate with their mesonic analogs,
as expected (this should no longer be true if a chemical potential is turned on). Meson masses are
expected to beNc independent, regardless of the fermion representation.

Pseudoscalar and vector meson decay constantsf scale differently withNc in the fundamental
and AS2 representations. The expected largeNc scaling behavior is

f ∼
{√

Nc fundamental,
Nc AS2.

(4.1)
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Figure 1: Phase diagram of theSU(4) AS2 theory in the (β , κ) plane. The solid lines are drawn to guide
the eye and are not a fit to the data. From right to left: theκc line, the thermal transition linesκt(Nt = 8) and
κt(Nt = 6), and the bulk transition lineκb. The dotted line indicates weakening of the bulk transitionto a
crossover.

In leading order inNc, baryon masses scale with the number of quarks (Nb) in the baryon, with
corrections.Nb = Nc for fundamental representation fermions, of course, andNb = Nc(Nc −1)/2
for AS2 fermions [16]. This means thatNb = 6 for ourNc = 4 case. This is easy to understand by
noting that the AS2 representation ofSU(4) is equivalent to the vector representation ofSO(6), and
the color singlet baryon wave function is just the antisymmetric product of six vectors. At order
1/Nb, the baryon massMB is given by the rotor formula [17, 18]

MB(J) ≈ Nbm0+B
J(J+1)

Nb
. (4.2)

The parametersm0 andB depend on the quark mass. These are just the leading terms in a1/Nc

expansion. For example,m0 = m00+(1/Nc)m01+(1/N2
c )m02+ · · ·. The terms in the expansion,

such asm01, are expected to have some “typical hadronic size.” This generic behavior is also
expected for meson masses and decay constants.

In Fig. 2, we plot the data for the pseudoscalar and vector meson masses as a function of the
AWI quark massmq. The weak dependence of meson masses onNc and representation confirms
large-Nc expectations.

To compare decay constants at differentNc, we follow Eq. (4.1) and rescale the fundamental
representation data by

√

3/Nc, and the AS2 data by 3/Nc. In Fig. 3, we plot the rescaled pseu-
doscalar and vector meson decay constants inr1 units. DynamicalSU(3) data overlap well with
all the differentNc quenched fundamental ones. TheSU(4) AS2 data is consistently above the
fundamental ones, but the discrepancy is less than 20%.

Baryon mass data are shown in Fig. 4. To compare to the rotor formula, we fit the data with
Eq. (4.2) treatingm0 andB as free parameters. The fit results are shown in the left panelof Fig. 5
for AS2 data at one quark mass, corresponding toκ = 0.1285. The squares are the fit results and
the octagons with error bars are the data points. The correlation between the parametersm0 andB
at different quark masses is shown in the right panel of Fig. 5. The slope ofr1B versus 1/(r1m0) is
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Figure 2: Meson spectroscopy. On the left, the squared pseudoscalar mass scaled byr2
1, on the right,r1

times the vector meson mass. The abscissa isr1 times the AWI quark mass. The data sets are: black squares
for quenchedSU(3) fundamentals, black diamonds for quenchedSU(5) fundamentals, black octagons for
quenchedSU(7) fundamentals, red crosses forSU(4) AS2; the fancy diamonds are the PQ data. Finally, the
blue squares areSU(3) with two dynamical, fundamental flavors.

Figure 3: Pseudoscalar and vector meson decay constants. The abscissa is r1 times the AWI quark mass.
The meaning of the symbols is the same as in Fig. 2. The data arerescaled according to Eq. (4.1) as described
in the text.

around one in the log-log plot. This suggests that the parameter B is inversely proportional tom0:
this is consistent with the rotor formula, sinceNB/(2B) is the baryon’s moment of inertia.

5. Conclusions

Large-Nc scaling certainly seems to describe all of our data, both with fundamental and AS2
fermions. Even the quantities with the poorest agreement, the decay constants, show only a twenty
per cent discrepancy. Phenomenologists commonly use large-Nc scaling to move from QCD to
other confining theories. Lattice simulations show that this is a reasonable thing to do.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
2
7
5

SU(4) sextet spectrum Yuzhi Liu

Figure 4: Baryons. The black data are (from the top) quenchedSU(7), SU(5) andSU(3) data. The blue oc-
tagons areSU(3) with dynamical fermions. The red lines are the six quark baryons inSU(4) AS2, octagons
for dynamical and fancy diamonds for partially quenched. HigherJ states lie higher in mass and equalJ
value points are connected by lines.

Figure 5: Left: Fit to rotor formula.SU(4) AS2; κ = 0.1285. Octagons with error bars are the data points;
squares the best fit values. Right:B vs. m0 from the rotor formula; black diamonds from quenchedSU(3),
blue squares from fullSU(3). TheSU(4) data are shown as red octagons for the dynamical sets and fancy
diamonds for the partially quenched set.

Our large-Nc story for AS2 fermions is still incomplete. With only twoNc’s, one cannot do
any kind of detailed analysis. Additionally,SU(4) with AS2 fermions is also special in its pattern
of chiral symmetry breaking compared to all otherNc’s. We plan to continue our studies of this
curious system.
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