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with that of the corresponding Anderson model. Here we study the spatial structure of the eigen-
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structure. We verify the scale invariance of Dirac eigenmodes at the critical point.
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1. Introduction

It is well-known that the chiral cross-over of QCD is accompanied by a drastic change in the

low-end of the spectrum of the Dirac operator. In a theory with massless quarks the spectral density

at zero is proportional to the order parameter of the phase transition from the chirally broken to the

symmetric phase [1]. Although in the real world even the lightest quarks are massive, most of

the chiral symmetry breaking in QCD at low temperature still comes from spontaneous breaking.

As a result, the qualitative picture of the Dirac spectrum across the transition is similar to that in

the massless (chiral) limit. In Fig. 1 we show a cartoon of how the spectral density changes in

QCD across the transition. At low temperature the spectral density at zero is finite, signaling the

spontaneous breaking of chiral symmetry. At a point around the critical temperature of the cross-

over, the spectral density at zero vanishes and the low-end of the spectrum becomes more and more

sparse as the temperature increases further.

These features of the Dirac spectrum are rather well-known. What is not so widely known,

however, is that across the transition not only the spectral density but also the physical nature of

the low eigenmodes changes considerably. Below the critical temperature Tc the lowest modes are

delocalized in the whole volume, no matter how large that is. In contrast, above Tc the lowest

part of the Dirac spectrum consists of modes localized on the scale of the inverse temperature [2].

However, even at high temperatures, the modes farther away from the edge, in the bulk of the

spectrum, are still delocalized. In Fig. 1 the shaded regions indicate the localized modes, that are

separated from the delocalized ones by the so called mobility edge. The localization properties of

the eigenmodes is also reflected in the spectral statistics: eigenvalues corresponding to localized

modes obey Poisson statistics, those corresponding to delocalized modes are described by Wigner-

Dyson statistics, known from random matrix theory, and widely used in the study of Dirac spectra

below Tc.

The transition in the spectrum from localized to delocalized modes is analogous to Anderson

transitions, first proposed to take place in conductors, in the presence of disorder in the crystal

lattice [3]. In fact, already ten years ago it was suggested that the QCD chiral transition might be

understood as an Anderson transition [4]. Later, using calculations in the instanton liquid model

[5] and lattice QCD [6], qualitative support was obtained for this picture. Subsequently some of

us studied Dirac spectra well above Tc. We found that the lowest part of the spectrum is always

T < Tc T ≈ Tc T > Tc

localized ↑
mobility edge

Figure 1: Schematic picture of the spectral density of the Dirac operator around zero as the system crosses

the critical temperature from below. The temperature increases from left to right and the shaded areas

indicate the localized modes at the low-end of the spectrum.
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localized and that the position of the mobility edge, separating localized and delocalized modes,

is controlled by the temperature. Most importantly, the temperature where the mobility edge goes

to zero and localized modes disappear, coincides with the chiral and deconfining cross-over tem-

perature [2]. This lends further support to the conjecture that the Anderson-type transition in the

spectrum and the chiral transition at Tc are strongly related. In the present work, to elucidate this

connection further, we propose to study the spatial structure of the Dirac eigenmodes across the

transition. In particular, we present preliminary results supporting the expectation that at the tran-

sition the Dirac eigenmodes show signs of critical behavior similar to those found in Anderson

transitions.

2. Anderson transition in the Dirac spectrum above Tc

The connection between Anderson transitions and the transition in the Dirac spectrum above

Tc is much more than a loose analogy. In previous work, using finite size scaling of the unfolded

level spacing distribution, we showed that in the thermodynamic limit at the critical point λc (the

mobility edge) in the spectrum, spectral properties change in a non-analytic way. This also implies

a diverging correlation length in the eigenmodes. Moreover, we found that the critical exponent ν

characterizing this singularity is compatible with that of the three-dimensional unitary Anderson

model [7]. This strongly suggests that above Tc there is indeed a genuine Anderson transition from

localized to delocalized modes in the Dirac spectrum and this transition is in the same universality

class as that of the Anderson model.

However, we immediately have to point out that this “phase transition” in the spectrum does

not imply a physical phase transition in QCD. This is because there is no physical control param-

eter that could tune the system to the critical point λc. The mobility edge λc is just a point in the

spectrum of the Dirac operator and thermodynamic quantities are averages over the whole Dirac

spectrum. This has to be contrasted with the situation in Anderson transitions occurring in con-

densed matter systems. In that case the mobility edge is a genuine physical energy, a point in the

spectrum of the one-electron Hamilton operator. By changing some physical control parameter

(electron density, external field) the Fermi energy can be driven through the mobility edge. As

the Fermi energy passes from the delocalized (conducting) states to the localized (non-conducting)

states, the zero temperature conductivity changes non-analytically and the Anderson transition im-

plies a genuine physical phase transition.

This is an important difference between the Anderson transitions in condensed matter systems

and QCD. However, even in QCD there is a possibility for the Anderson transition to be accom-

panied by a real phase transition. This is at the temperature where the mobility edge reaches zero

when the temperature is lowered from above Tc. In the thermodynamic limit, this is expected to

happen at a well-defined temperature that we call TcAnd. Note that TcAnd is well-defined even if the

chiral transition is only a cross-over, like in QCD. To demonstrate how the mobility edge goes to

zero, in Fig. 2 we plot the temperature dependence of the mobility edge in QCD with N f = 2+ 1

light staggered quark flavors with physical masses. We normalized the mobility edge by dividing it

by the bare light quark mass to obtain a quantity that has a well-defined continuum limit. This also

made it possible to plot data from simulations with different lattice spacings in the same figure.
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Figure 2: The temperature dependence of the mobility edge λc obtained from lattice QCD simulations with

2+1 flavors of staggered quarks at the physical point.

The line is a quadratic fit to the data. An extrapolation yields TcAnd = 163(2)MeV, which is within

the range of the chiral and deconfining cross-over [8].

We have seen that the finite temperature cross-over and the (dis)appearance of localized modes

happen around the same temperature. In some QCD-like models with a genuine chiral phase tran-

sition not only TcAnd but Tc is also well-defined and one can make a stronger statement. We found

that in that case the two critical temperatures coincide (see Pittler’s contribution at this conference

[9]). It would be interesting to make connections between the physical quantities characterizing

the critical behavior at the two transitions. To this end, we would need a detailed study around the

point in the “phase diagram” where the λc(T ) critical line reaches the horizontal axis. The crucial

question is whether the vanishing of the mobility edge is accompanied by an abrupt change in the

spectral density in a finite interval around zero virtuality. If this happens and the change in the

spectral density is non-analytic in the temperature, the theory has a phase transition.

3. Dirac eigenmodes at the QCD Anderson transition

Previously, most of our quantitative results about the QCD Anderson transition were based

on statistical properties of the Dirac spectrum. However, it is well known in the case of Ander-

son transitions that the spatial structure of eigenmodes also encodes useful information about the

transition. In the Anderson model, exactly at the critical point, the eigenmodes develop a peculiar

multifractal structure [10]. Recently this has been exploited for a high precision determination of

the critical exponent using finite size scaling of wave function observables [11].
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Why is the structure of Dirac eigenmodes important in connection with the chiral transition?

The reason is that any fermionic observable can be decomposed in terms of eigenmodes. In partic-

ular, the disconnected chiral susceptibility can be written in terms of eigenmode correlators of the

form

G(x) = 〈|ψ(0)|2 |ψ(x)|2〉. (3.1)

If the eigenmodes have a (multi)fractal structure then the behavior of the correlator G(x) is closely

related to the fractal dimension(s) characterizing the eigenmodes [13]. This can provide a link

between fractal properties of the critical eigenmodes and (pseudo)-critical properties of the chiral

transition.

Before outlining our proposal for quantities to look at in connection with the eigenmodes, we

have to explain some basic concepts concerning multifractals. Let us assume that f is a function

f : Rd → R. Let us define the level sets of the function as

S(a) = {x : a < f (x) < a+∆a}. (3.2)

If f is a smooth function then the level sets either have dimension d or are empty, depending on

whether the given neighborhood of a has an intersection with the range of f or not. In contrast, if the

dimension of the level sets d(a) depends non-trivially on a, we call f a multifractal weight function.

We would like to study the average properties of a collection of such functions f (x) = |ψ(x)|2 that

are given only at the lattice sites and normalized to unity. We subdivide the lattice of linear size L

into smaller boxes of linear size l ≪ L and compute the coarse grained box weights

µk(l) = ∑
x ∈ box k

|ψ(x)|2, (3.3)

where the sum runs over those lattice sites that are contained in box k. If the eigenmode has a

multifractal structure, the system is scale invariant and consequently the distribution of box weights

is expected to depend only on the ratio l/L but not on l and L separately. If this is the case then the

l/L dependence of the distribution can be used to obtain the multifractal dimensions characterizing

the eigenmodes [11].

As a first check, we would like to verify scale invariance at the mobility edge using a quantity

derived from the box weights of eq. (3.3). For illustration, here we look at a quantity that has a

transparent physical interpretation, called the information dimension. It is defined as

α1 =
1

log(l/L)
〈∑

k

µk log(µk)〉, (3.4)

where the sum runs over all the boxes of size l and the averaging is performed for eigenmodes in

a narrow spectral window on several gauge configurations. Since the eigenmodes are normalized,

the quantity that is averaged is the information entropy of a given eigenmode corresponding to the

given coarse graining box size l. It can be easily verified that for eigenmodes uniformly spread

in the whole system volume, α1 is equal to the dimension of the system. On the other hand, for

localized modes, the information entropy goes to zero if L → ∞ and l/L is kept fixed. This is

because as the coarse graining box size becomes larger, eventually the whole eigenmode will be

typically contained in one box.
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Figure 3: The information dimension α1 of eigenmodes as a function of the location in the spectrum. The

average was computed separately for eigenmodes located in different narrow windows in the spectrum. The

various symbols represent data taken in systems of different spatial sizes while keeping the ratio of coarse

graining box size to the system size fixed at l/L = 0.125.

The eigenmodes for the computation of α1 were obtained from lattice QCD simulations per-

formed with the action of Ref. [12] at a fixed temperature well above Tc. We used spatial system

sizes in the range L = 3− 7 fm. In Fig. 3 we plot α1 as a function of the location of the eigen-

modes in the spectrum. The different symbols correspond to different spatial system sizes and the

coarse graining box size l was always chosen such that the ratio l/L was kept fixed at l/L = 0.125.

In the figure we can see that around λa = 0.34 the information dimension becomes independent

of the system size, indicating that this is the critical point (mobility edge) in the spectrum where

eigenmodes are scale invariant. It is reassuring that the critical point obtained here from eigenmode

properties agrees with the one that we computed previously from spectral statistics [7].

Using quantities like the above described information dimension, the finite size scaling analy-

sis of Ref. [7] can be repeated. This is work in progress but our preliminary results already indicate

that both the critical point and the critical exponent we obtain are consistent with the previously

determined values that were based on spectral statistics. However, it is interesting to note that the

uncertainty of the results based on eigenmode observables is larger than those obtained from spec-

tral statistics using the same ensemble of lattice configurations. This is because scaling violations,

due to operators irrelevant in the RG sense, appear to be more sizeable for eigenmode observ-

ables than for observables derived from spectral statistics. For better precision one might need to

consider systems of larger spatial sizes.
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4. Conclusions

Previously we found an Anderson-type localization-delocalization transition in the spectrum

of the QCD Dirac operator at high temperature. Based on a finite size scaling analysis of spectral

observables we obtained strong evidence that the transition is in the same universality class as that

of the corresponding (3d unitary) Anderson model. In the present paper we proposed a quanti-

tative study of the spatial structure of the corresponding eigenmodes. This could provide further

information concerning the nature of the transition. As a first consistency check we verified that

at the critical point in the spectrum the coarse grained eigenmode box probabilities become scale

invariant, as expected in Anderson transitions. We found that the critical point obtained from the

scale invariance of the eigenmodes coincides with the one previously determined from spectral ob-

servables. Preliminary results of a finite size scaling analysis of eigenmode data indicate that the

resulting critical exponent is also consistent with the one obtained from spectral data. This shows

that in QCD, spectral and eigenmode properties signal the Anderson transition in a consistent way,

exactly like in the Anderson model. It would be also interesting to determine the dimensions char-

acterizing the multifractal eigenmodes at the critical point and compare those to results from the

Anderson model. To this end we intend to study the dependence of the box probabilities on the

ratio of the box size and the system size (l/L). In the present study this quantity was kept fixed.
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