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1. The critical line of QCD

The fact that strongly interacting matter undergoes a transition at finite temperature, where
chiral symmetry is restored and quark and gluons are not confined, is a well established property of
QCD. In this regard, Lattice QCD simulations yield evidence for a smooth crossover, instead of a
proper phase transition1, to take place at a temperature Tc around 155 MeV at zero baryon density
[1, 2].
It is of the utmost importance to determine what is the effect of a finite baryon chemical potential µB

on the critical temperature, in order to obtain reliable QCD predictions to be used in phenomeno-
logically relevant contexts, like e.g. the physics of the early Universe, the description of neutron
stars and the physics of heavy ion collisions.
Unfortunately, it is currently impossible to determine directly this dependence by means of lattice
simulations, because of the infamous sign problem. Nonetheless, many approaches have been de-
vised to partially circumvent this issue, for example the reweighting method, the Taylor expansion
method, the canonical approach and the method of analytic continuation from an imaginary chem-
ical potential [3]. Hybrid approaches have also been conceived [4]. The goal of these strategies
is to obtain reliable predictions from the lattice, for at least small values of the µ/T ratio. In this
regime, an analytic parametrization of Tc as a function of µB at lowest order is the following:

T (µB)

Tc
= 1−κ

(
µB

T (µB)

)2

+O(µ4
B) (1.1)

where κ is the curvature and Tc is the critical temperature at zero baryon chemical potential. The
linear term is forbidden because of the QCD symmetry under charge conjugation.
The critical line in the QCD phase diagram can be compared to the so called chemical freeze-out
curve in the T -µB plane, which is determined in heavy ion collision experiments. By looking at
the abundances of the yields of collisions, it is indeed possible to locate the point of last chemical
and thermal equilibrium in the phase diagram, according to a thermal-statistical model [5]. The
collection of these points in the phase diagram represents the chemical freeze-out curve. In general
one can only assume that chemical equilibrium is reached after hadronization, but it is nonetheless
sensible to suppose that this happens shortly after, which implies that the chemical freeze-out curve
should lie just below the critical line.
Actually, there is not a good agreement between lattice determinations of Tc and the chemical
freeze-out estimate. For example, lattice results yield a value of κ which is smaller by a factor
2-3 than the one obtained from the freeze-out curve [6], even if a recent improved reanalysis of
available experimental data yields a reduction of the discrepancy [7].
Currently there are a number of estimates of κ at the physical point, mostly based on the Taylor
expansion method [8, 9, 10], making use of different discretizations and observables. Another
recent determination [11] has been obtained with analytic continuation and adopting a HISQ/tree
action, in which the strange quark chemical potential µs is set equal to the light quark chemical
potential µl . We will later compare our findings with the ones in these other works (see Fig. 2).
In this work we present a study [12] of the critical line at the physical point on the N f = 2+ 1
theory, performed using the analytic continuation method, which makes a reliable determination of

1For simplicity we will refer to the crossover as the “transition”, even if no critical behavior is associated with it.
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Tc(µI,B) possible. We look at two observables, namely the renormalized chiral condensate and the
renormalized chiral susceptibility, and for both quantities we obtain estimates of Tc as a function
of µB and thus of the curvature κ . We mainly study the situation in which µs = 0, but also check
the case in which µs = µl .
The analytic continuation approach relies on the fact that if we choose µ to be on the imaginary
axis (µ = iµi), the sign problem is non existent. By choosing µB purely imaginary, equation (1.2)
becomes

T (µI,B)

Tc
= 1+κ

(
µI,B

T (µI,B)

)2

+O(µ4
B) . (1.2)

2. Observables

In order to evaluate the (pseudo) critical temperature, a definition of it is needed first. We do
this by mean of two observables, namely the renormalized chiral condensate and the renormalized
chiral susceptibility.
For the renormalized chiral condensate, we start from the chiral condensate for a generic flavour f
on the lattice, which is defined by

〈ψ̄ψ〉l =
1

V4

∂ logZ
∂ml

=
Nl

4V4
〈TrM−1

l 〉 (2.1)

where N f is the degeneracy of the flavour f and M f is the Dirac matrix with the f quark mass. We
consider the light quarks chiral condensate and choose its renormalization as in [13]:

〈ψ̄ψ〉rl (T )≡
〈ψ̄ψ〉l(T )− 2ml

ms
〈ψ̄ψ〉s(T )

〈ψ̄ψ〉l(0)− 2ml
ms
〈ψ̄ψ〉s(0)

(2.2)

where 〈ψ̄ψ〉l ≡ 〈ψ̄ψ〉u + 〈ψ̄ψ〉d represents the chiral condensate (2.1) for the light quarks, while
〈ψ̄ψ〉s is the chiral condensate for the strange quark. The ratio is intended to be calculated between
quantities estimated at the same lattice spacing.
For the renormalized chiral susceptibility, we start from the definition of the bare chiral suscepti-
bility on the lattice

χψ̄ψ ≡
∂ 2 logZ

∂m2
l

=
1

V4

(
Nl

4

)2

〈(TrM−1
l )2〉− 1

V4

(
Nl

4

)2

〈TrM−1
l 〉

2 + − 1
V4

Nl

4
〈
TrM−2

l

〉
, (2.3)

where Nl is the number of light flavours in the theory and Ml is the Dirac matrix with light quarks
mass. We have chosen to renormalize it as described in [2], namely as

χ
r
ψ̄ψ(T )≡ m2

l
(
χψ̄ψ(T )−χψ̄ψ(0)

)
, (2.4)

where the factor m2
l removes the multiplicative UV divergences, while by subtracting the value of

the susceptibility at zero temperature the additive UV divergences are eliminated. In the plots and
for the fits we use the dimensionless quantity χr

ψ̄ψ(T )/m4
π .
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3. Numerical Setup

We simulated N f = 2+1 QCD with physical quark masses, using the stout smeared staggered
fermions formulation for the quark fields, and a tree level Symanzik improved action for the gauge
part. Our simulation parameters for the coupling β and the bare quark masses were obtained
interpolating the data reported in [14, 15] in order to move on a line of constant physics with
mπ ≡ 135MeV and ms/ml = 28.15.
In order to apply our renormalization procedure we need to evaluate both 〈ψ̄ψ〉 f and χψ̄ψ at zero
temperature, thus we measured the necessary quantities on a 324 lattice for a selection of β values,
and then interpolate the results.
We have acquired data on 163× 6, 243× 6, 323× 6 and 323× 8 lattices for both renormalized
observables, for a few values of the chemical potential of the light quarks µl , with the strange
quark chemical potential µs set to zero. On the 323× 8 lattice we also studied the setup in which
µs = µl , in order to test the dependence of the results on µs. For each value of µl we have performed
simulations for O(10) values of T located around the transition, and the data for both observables
has been obtained with noisy estimators, with 8 random vectors for each flavour.
Our simulations were run on the Blue Gene/Q Fermi at CINECA and on the CNS4 Zefiro cluster
at INFN-Pisa.

4. Numerical results

Since the rapid change of properties that we are studying is not a real phase transition, even in
the thermodynamic limit the value of the critical temperature depends on the definition of the criti-
cal temperature itself. The behaviour of the renormalized chiral condensate 〈ψ̄ψ〉rl with the temper-
ature T at fixed µB is well described, within our the statistical uncertainties, by an arctangent-like
function (see left column of Fig.1). In order to define Tc(µB), we performed a best fit of the data
with the function

〈ψ̄ψ〉rl (T ) = A1 +B1 arctan(C1(T −Tc)) , (4.1)

so that Tc(µB) is defined as the inflection point of 〈ψ̄ψ〉rl (T ) (see left column of Fig. 1). Function
(4.1) turns out to well describe the data on the whole range of explored temperatures. We evalu-
ated the systematic error on Tc(µB) by varying the chosen interpolation (to a rational function or
an hyperbolic tangent), while the statistical error on the fit parameters were evaluated through a
bootstrap technique.
As far as the renormalized chiral susceptibility is concerned, in order to give an estimate of the crit-
ical temperature we performed a fit of the dimensionless quantity χr

ψ̄ψ(T )/m4
π with a Lorentzian

function, which describes reasonably well the data around the peak:

χ
r
ψ̄ψ =

A
B2 +(T −Tc(µB))2 . (4.2)

The critical temperature obtained from χr
ψ̄ψ is defined as the location of its maximum (see right col-

umn of Fig.1). The systematic error were estimated by assessing the dependence of Tc(µB) on the
choice of the fitting range, while the statistical error was determined by a bootstrap technique. We
fitted the Tc(µ) data according to (1.2), in order to find the curvature κ and the critical temperature
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Figure 1: Data for both observables, with the curves of the best fit used to determine Tc(µ) (results from
the 323× 8 lattice with µs = 0 ). The results of the best fits, in the form of 4.1 and 4.2 are listed in [12].
Left : Renormalized light chiral condensate (for the sake of readability, the values at the critical temperature
are denoted with filled triangles); Right : Renormalized light chiral susceptibility divided by m4

π ; Lines
correspond to the best fit described in the text and the filled triangles denote the values at the pseudo-critical
temperature.

at zero chemical potential Tc. While in the µs = 0 setup the quadratic form is sufficient to well
describe the data, in the case of the µs 6= 0 setup it is necessary to add a quartic term in µB to have
a reasonable value of χ2. In fact, the introduction of a non-zero strange quark chemical potential
causes an increase of the relative temperature change Tc(µB)/Tc−1 which is up to 40% larger than
in the µs = 0 case (see Fig.2). It is tempting to put this aspect in relation to the fact that, in the
µs = µl setup, the Roberge-Weiss endpoint is closer to the µl = 0 axis, thus enhancing non-linear
corrections (for a detailed discussion of this point, and of the effect of µs on the Roberge-Weiss
transition, see [12]). When comparing the Tc(µI,B) curves obtained for the µs = 0 and µs = µl

cases from the 323×8 lattice, the coefficients of the quadratic term (which are proportional to the
curvatures) are well compatible within uncertainties if we include quartic corrections in the latter
situation.
By using the data from the 243×6 and 323×8 lattices and assuming that the finite cut-off effects
are of order a2 ∝ 1/N2

t , we can try a rudimentary continuum scaling analysis for the curvature.
We obtain κ = 0.0132(18) from the renormalized chiral condensate and κ = 0.0126(22) from the
renormalized chiral susceptibility. An assessment of the finite size effects is done in [12].

Our estimates of κ can be compared with the results of a selection of recent works which look
at the chiral transition in N f = 2+1 QCD, at or near the physical point [8, 9, 11]. Our result seem
generally larger than those obtained by the Taylor expansion method, and in marginal agreement
with the result obtained by analytic continuation but with a different discretization. A comparison
between the results of these works and ours is shown in the right side of Fig. 2. However, a correct
assessment of the discrepancies and agreements between our results and the ones of other works
requires a careful analysis of all the possible sources of systematic differences between the various
determinations. While lattice discretization effects should vanish in the continuum limit, there is a
possible discrepancy due to the ambiguities in the definition of the critical temperature, as already
stated. A discussion of these aspects is reported in [12].
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Figure 2: Left: Estimates of Tc obtained from the renormalized chiral condensate for various values of the
chemical potential and lattice sizes. The lines correspond to quadratic or quartic fits in µl,I , as discussed in the
text. The value of the parameters obtained by the best fit, and the corresponding graph for the renormalized
chiral susceptibility can be found in [12]. Right: Determinations of the critical line curvature κ in a selection
of recent works, which can be compared to ours. From bottom to top: i) renormalized chiral condensate,
this work; ii) renormalized chiral susceptibility, this work; iii) analytic continuation, disconnected chiral
susceptibility with µs = µl [11]; iv) Taylor expansion, chiral susceptibility [8]; v) Taylor expansion, chiral
condensate (different renormalization) [9].

5. Conclusions

We presented a determination of the pseudo-critical line of N f = 2+ 1 QCD with physical
quark masses by the method of analytic continuation from an imaginary chemical potential. We
considered a stout smeared staggered discretization and performed simulations on lattices with
Nt = 6 and Nt = 8 at the physical point. In order to locate the pseudo-critical temperature Tc,
we have considered both the inflection point of the renormalized chiral condensate and the loca-
tion of the peak of the renormalized chiral susceptibility. The pseudo-critical temperature at zero
quark chemical potential is found to be in agreement with previous determinations. A preliminary
continuum scaling analysis of the curvature yields κ = 0.0132(18) for the chiral condensate and
κ = 0.0126(22) for the chiral susceptibility. In the future we plan to extend our investigation to
lattices with at least Nt = 10, in order to assess the systematics associated with the continuum ex-
trapolation.
Since the value of the pseudo-critical temperature depends on its definition, at least part of the
differences between the different determinations of the curvature of the critical line present in the
literature can be explained by a careful analysis of the procedures used to obtain it. For exam-
ple, if we analyse our data following as much as possible the methods in [9] or in [11], we obtain
determinations of κ which compare better to the results of the respective works 2(see [12]).

We have also considered the case of µs = µl . The quadratic term in the parametrization of
the critical line does not change significantly, but non-linear terms in µ2

l become evident. It is
suggested in [12] that the origin of this difference could be related to the fact that, in this case, the

2The present work and [9] share the same discretization, but there the Taylor expansion method is used. In [11] the
discretization is different from the one adopted in the present work, together with analytic continuation.
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so-called Roberge-Weiss line and the associated non-analytic behaviour moves closer to the µl = 0
axis.
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