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1. Introduction

Phase structure and thermodynamics of QCD matter are important to understand for the phe-
nomenology of heavy-ion collisions or the properties of neutron stars. We have significant insight
into the QCD phase structure at vanishing chemical potential. Unfortunately, in the case of finite
baryon chemical potential, lattice simulations are hampered by the fermion sign-problem in QCD.
There has been a lot of effort to solve or circumvent this sign problem, such as the development of
the complex Langevin algorithm for QCD [1, 2], for example. Other works have avoided the sign
problem by switching to QCD-like theories, with gauge groups like SU(2) [3, 4] or G2 [5], in order
learn about the more qualitative properties of strong interaction matter at finite density.

In recent years we have also seen the development of effective Polyakov loop theories on
the lattice in order to investigate the deconfinement transition of QCD. For pure gauge theories
these Polyakov loop models lie in the same universality class as the underlying Yang-Mills theory.
Explicit results have demonstrated that versions of these models are able to predict the location of
the deconfinement transition of SU(3) Yang-Mills theory within less than 6% [6]. It is possible to
incorporate dynamical fermions in the effective theory and it has been shown that the sign problem
at finite chemical potential can be dealt with, e.g. by a complex Langevin algorithm [7].

To check the range of applicability we can compare the simulations of our effective Polyakov
loop theory to simulations of the underlying gauge theory. Therefore we investigate two-color
effective Polyakov loop theories to be able to compare results of full two-color QCD simulations
with the effective SU(2) Polyakov loop theory at all chemical potentials.

One basic quantity to calculate is the effective Polyakov loop potential. It is a crucial input
for effective theories in the continuum like Polyakov–Quark-Meson or Polyakov–Nambu–Jona-
Lasinio models. Usually one assumes the Polyakov loop potential to have no explicit dependence
on the baryon chemical potential, with only implicit dependencies originating from sea quarks
which are incorporated in a chemical potential dependence of the model parameters [8]. While
this approximation is valid for small values of the chemical potential it is not quite clear if this is
also true at larger chemical potentials. Here we will show first steps towards such a calculation.
We present unquenched results for the Polyakov loop potential obtained from full two-color lattice
simulations and compare them to simulations of different effective Polyakov loop models. Fur-
ther we will apply the effective theory to the cold and dense regime of two-color QCD where we
measure the baryon density.

2. Effective Polyakov Loop Theory

The most general form of an effective action in terms of Polyakov loops is

Seff = ∑
i j

LiK(2)(i, j)L j +∑
i jkl

LiL jK(4)(i, j,k, l)LkLl + · · ·+∑
i

h(1)(i)Li + . . . , (2.1)

with Lx being the Polyakov loop at position x.
The goal is now to find the effective kernels K(n) and couplings h(n) of the effective theory in

terms of the parameters of the underlying theory. This can be done by non-perturbative methods
like inverse Monte-Carlo [9] or the relative weights method [10], or one can calculate the kernels
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Figure 1: Distributions of the SU(2) Polyakov loop
from the simple effective model at subcritical cou-
plings λ < λc = 0.196.
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Figure 2: Distributions of the SU(2) Polyakov
loop from the resummed effective model at subcriti-
cal couplings λ < λc = 0.2143.

and couplings analytically in a combined strong-coupling and hopping expansion. To compare
these methods we will match results from SU(2) Yang-Mills theory to results both from the simplest
ansatz for an effective action as well as the leading order result of the effective theory derived by a
strong-coupling expansion. The action for the simplest Ansatz is given by

Seff =−λ ∑
i j

LiL j , (2.2)

describing a nearest-neighbor interaction between Polyakov loops. The effective coupling λ in
terms of the original lattice coupling β and time-like extension of the lattice Nt can be obtained
by inverse Monte-Carlo methods. The leading order effective action from the strong-coupling
approach is given by

Seff =−∑
i j

log(1+λLiL j) . (2.3)

Here one resums generalized Polyakov loops, winding several times around the lattice to produce
the logarithm. The effective coupling in terms of the original lattice parameters is given by

λ (u,Nt ≥ 5) = uNt exp
[

Nt

(
4u4−4u6 +

140
3

u8− 36044
405

u10 +O(u12)

)]
, (2.4)
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Figure 3: Polyakov-loop correlator of the
effective model (2.3) compared to the pure
gauge theory at β = 2.0 on a 163×4 lattice.

where u(β ) is the ratio of the first two modified Bessel
functions u(β ) = I2(β )/I1(β ), as usual. Terms involv-
ing more Polyakov loops or longer range interactions
are of higher order in β and are therefore suppressed in
the strong coupling limit. To compare the effective the-
ories with pure gauge theory results we compare mea-
sured Polyakov loop distributions which we found to
be much more sensitive to parameter changes than e.g.
the expectation values of the Polyakov loop. In the
pure gauge theory the distribution remains symmetric
and unmodified throughout the symmetric phase. At
couplings above the critical coupling βc center sym-
metry is spontaneously broken and the Polyakov loop

3

P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
7
3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
7
3

Effective SU(2) Polyakov Loop Theories with Heavy Quarks on the Lattice Philipp Scior

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-1 -0.5  0  0.5  1

solid:  pure gauge
dashed:  am=0.5
dotted:  am=0.1

dash-dotted:  am=0.02

P
(L

)

L

Nt=12 T/Tc=0.83
Nt=10 T/Tc=1.00
Nt=8   T/Tc=1.25
Nt=6   T/Tc=1.67

Figure 4: Polyakov-loop distributions from simula-
tions of two-color QCD with two flavors of staggered
quarks of various masses at β = 2.577856.
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Figure 5: Effective Polyakov-loop potentials for
two-color QCD with two flavors of staggered quarks
from the Polyakov-loop distributions in Fig. 4.

distributions get skewed, resulting in a finite value of 〈L〉. Figures 1 and 2 show the results of the
simulations at subcritical values of λ for both effective models compared to results from pure SU(2)
gauge theory simulations at the critical coupling βc for Nt = 10. In the strong coupling regime or
respectively at small effective coupling λ , the distributions match the ‘exact’ distribution from the
SU(2) gauge theory simulations very well. At larger couplings but still in the symmetric phase, the
effective theory distributions get deformed, however. This effect is strongest the in simple effective
model of Eq. (2.2) whose distribution shows strong deformations even developing a double peak
structure close to λc. The distributions from the resummed model, Eq. (2.3), also get deformed but
their overall shape remains qualitatively almost unchanged, and the deviations from the full gauge
theory result are generally much smaller. We therefore conclude that the resummed model is better
suited for couplings close to the critical coupling. The Polyakov-loop correlator of this model in
the strong coupling regime is compared with the gauge theory result in Fig. 3.

3. Effective Polyakov Loop Potential

We can use the Polyakov loop distribution P(L) to calculate the on-site effective Polyakov-
loop potential. First, we calculate the constrained effective potential V0 and then obtain the effective
Polyakov loop potential Veff via Legendre transformation:

V0(L) =− logP(L) ,

W (h) = log
∫

dL′ exp(−V0(L′)+hL′) , (3.1)

Veff(L) = suph (Lh−W (h)) .

Note that the minimum of Veff is correctly located at the expectation value of the Polyakov loop 〈L〉.
Figures 4 and 5 show Polyakov loop distributions and the corresponding effective potentials from
full two-color QCD simulations with two flavors of staggered quarks at β = 2.577856 and different
masses. The relative temperature scale is taken from [11]. There is a clear trend, the distributions
get skewed to the right resulting in a finite 〈L〉. This effect gets stronger for higher temperatures
and smaller quark masses. The effect on the effective potential is similar but not quite as drastic:
The minimum of the potential moves to larger L with higher temperature and lower quark mass.
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Figure 6: Polyakov-loop distributions from the ef-
fective theory compared to two-color QCD simula-
tions at T = 1.67Tc with am = 0.1 and am = 0.5.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

V
e
ff

L

QC2D: T/Tc=1.67, am=0.01
eff theory: λ=0.215687, h=0.0032

Figure 7: Effective Polyakov loop potentials from
the unquenched effective model and two-color QCD
simulations at T = 1.67Tc and am = 0.1

Since we now want to analyze the unquenched effective Polyakov loop potential with our
effective theory we have to include dynamical fermions into the theory. The structure of the fermion
action can be derived from a combined strong coupling and hopping expansion analogous to [7].
As for the pure gauge theory on can resum generalized Polyakov loops to obtain,

Sferm =−4N f ∑
i

log(1+hLi +h2) , (3.2)

and the leading order hopping expansion result for h reads

h(u,κ,Nt) = (2κeaµ)Nt +O(κ2u) . (3.3)

In the range where the hopping expansion is valid one can check that the resummation is not as im-
portant as in the gauge action because h is relatively small. This changes for smaller quark masses
or finite chemical potential µ , however, where h increases and resummation becomes important.

We choose (2.3) together with (3.2) as the action for our Polyakov-loop effective theory. How-
ever, to compare our results to the full two-color results from above we have to apply the theory
outside the regime where the strong coupling and hopping expansions are valid. Therefore, rela-
tions (2.4) and (3.3) for the effective couplings are no longer valid. Our strategy for comparing our
full two-color simulations with the ones from the effective theory is a two step procedure: First,
we compare distributions from pure gauge simulations and the effective theory without quarks to
match distributions with the same expectation value of the Polyakov loop,

〈L〉=
∫ 1

−1
dP(L) L , (3.4)

in order to find the effective gauge coupling λ associated with a particular temperature T . In the
second step we then match the effective theory with dynamical quarks at that λ or T for different
values of h to the distributions from full two-color QCD simulations with a particular quark mass
am, again identifying distributions with the same 〈L〉. Figures 6 and 7 show Polyakov-loop distri-
butions and effective potentials from the effective model compared to two-color QCD results for
a temperature of T = 1.67Tc. The overall shape of the distribution is reproduced quite well, but
some deviations from the full two-color QCD results remain. One can show, that these deviations
originate in the gauge part of the action. We believe that this is due to neglecting the interactions
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between Polyakov loops at larger distances which become increasingly important with higher tem-
peratures, above Tc. The effective potential shows much better agreement than the distributions.
It seems to be a generic effect of the Legendre transformation that distributions with the same
expectation value 〈L〉 lead to quite similar effective potentials.

4. Effective Theory for the Cold and Dense Regime

We will now apply the effective Polyakov-loop theory in the cold and dense regime of two
color QCD with heavy quarks. Here we are well inside the region where the strong coupling and
hopping expansions are applicable. In fact, the effective gauge coupling λ from (2.4) is negligi-
ble even at β = 2.5 in the temperature range we are interested in (T ∼ 4− 10 MeV). We have
λ (β = 2.5,Nt = 200) ∼ 1 · 10−15. We therefore end up with a completely fermionic partition
function. Due to the large number of time slices, with Nt between 200 and 600, we have to include
more terms in the hopping expansion of the fermion determinant. The effective action up to order
κ4 in the hopping exansion reads

−Seff = ∑
~x

log(1+hLi +h2)2−2h2 ∑
~x,i

Tr
hW~x

1+hW~x
Tr

hW~x+i

1+hW~x+i
+2

κ4N2
t

N2
c

∑
~x,i

Tr
hW~x

(1+hW~x)2 Tr
hW~x+i

(1+hW~x+i)2

+
κ4N2

t

N2
c

∑
~x,i, j

Tr
hW~x

(1+hW~x)2 Tr
hW~x−i

1+hW~x−i
Tr

hW~x− j

1+hW~x− j
+2

κ4N2
t

N2
c

∑
~x,i, j

Tr
hW~x

(1+hW~x)2 Tr
hW~x−i

1+hW~x−i
Tr

hW~x+ j

1+hW~x+ j

+
κ4N2

t

N2
c

∑
~x,i, j

Tr
hW~x

(1+hW~x)2 Tr
hW~x+i

1+hW~x+i
Tr

hW~x+ j

1+hW~x+ j
+κ

4Nt ∑
x,i

h4

(1+hLx +h2)(1+hLx+i +h2)
, (4.1)

where W~x stands for an untraced Polyakov loop. The only leftovers from the Yang-Mills part
of the original theory in the effective action are gauge corrections to the effective fermion couplings

h = exp
[

Nt

(
aµ + ln2κ +6κ

2 1−uNt

1−u

)]
, h2 =

κ2Nt

Nc

[
1+2

u−uNt

1−u
+ . . .

]
. (4.2)

In order to set a physical scale we again use the scale from [11] together with
√

σ = 440 MeV and
we calculate the diquark mass in the combined strong coupling and hopping expansion to be

amd =−2ln(2κ)−6κ
2−24κ

2 u
1−u

+6κ
4 + . . . . (4.3)
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We are now able to determine the fermion number density of the system,

n =
T
V

∂

∂ µ
logZ . (4.4)

Figures 8 and 9 show the results for a simulation in the cold and dense regime. The parameters
for this simulation are β = 2.5, a = 0.081 fm, κ = 0.00802, md = 20 GeV, Nt = 484, T = 5 MeV.
Figure 8 shows a sharp increase in the density just below µ = md/2 in agreement with the Silver
Blaze property. However, in our opinion this sharp increase should not be interpreted as the onset
of Bose-Einstein-Condensation of diquarks, i.e. nuclear matter in two-color QCD, because the
Polyakov-loop expectation value starts increasing even below this point indicating deconfinement.
To get a better insight of what is going on, we can look at a logarithmic plot of the quark density
shown in Figure 9. For chemical potentials µ < 9.96 GeV the slope is well described by a free
quark gas. This comes from the small but finite Polyakov-loop expectation value at finite T due to
the presence of the dynamical quarks which break center symmetry explicitly. At around µ ≈ 9.96
GeV the density has a ‘kink’ from where on it is dominated by two-quark states indicative of
statistical confinement. Since it is described by a thermal distribution in this regime as well, it
does not represent a diquark BEC but a thermal diquark gas at T 6= 0. At very large chemical
potentials the density saturates when every lattice site is occupied by the maximum number of
quarks, 2N f ·Nc = 4 here, as known from the two-color QCD [3, 4] or G2-QCD [5] simulations.
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