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We discuss the resolution of an inconsistency between lattice background field methods and non-
relativistic QED matching conditions. In particular, we show that lack of on-shell conditions
in lattice QCD with time-dependent background fields generally requires that certain operators
related by equations of motion should be retained in an effective field theory to correctly de-
scribe the behavior of Green’s functions. The coefficients of such operators in a nonrelativistic
hadronic theory are determined by performing a robust nonrelativistic expansion of QED for rel-
ativistic scalar and spin-half hadrons including nonminimal electromagnetic couplings. Provided
that nonrelativistic QED is augmented with equation-of-motion operators, we find that the back-
ground field method can be reconciled with the nonrelativistic QED matching conditions without
any inconsistency. We further investigate whether nonrelativistic QED can be employed in the
analysis of lattice QCD correlation function in background fields, but we are confronted with
difficulties. Instead, we argue that the most desirable approach is a hybrid one which relies on a
relativistic hadronic theory with operators chosen based on their relevance in the nonrelativistic
limit. Using this hybrid framework, we obtain practically useful forms of correlation functions
for scalar and spin-half hadrons in uniform electric and magnetic fields.
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1. Introduction

The lattice background field method provides a first principle approach to the calculation of
low-energy hadronic properties such as magnetic moments and electromagnetic polarizabilities [1].
The power of this method becomes striking when it is incorporated with an effective field theory,
namely nonrelativistic QED (NRQED); the universal low-energy parameters in NRQED, which
encompass hadronic structure determined from scattering experiments, can be computed using lat-
tice QCD in electromagnetic fields. Although the standard NRQED matching of S-matrix elements
relates these low-energy parameters to physical observables without any problem, however, the
extension of matching to theories in background fields becomes subtle.

To point out the physical relevance of this subtlety, we consider the energy shift of a charged
spin-half hadron in the zero momentum limit for the case of a uniform electric field,

∆E(~E) =
(

cA1 +
1
2

cA2

)
~E2

8M3 =−1
2

[
4παE −

Z2 +κ2

4M3 − Z
3M
〈r2

E〉
]
~E2, (1.1)

where M, κ , αE , and 〈r2
E〉 are the hadron mass, anomalous magnetic moment, electric polariz-

ability, and charge radius, respectively. The parameters cA1 and cA2 are the coefficients of terms
quadratic in electric and magnetic fields in the NRQED Lagrangian, Eq. (2.4), and have been de-
termined from the standard NRQED matching [2]. While the real Compton scattering process in
NRQED is independent from 〈r2

E〉, the NRQED action for proton in a uniform electric field shows
an energy shift as in Eq. (1.1). The appearance of the charge radius, which can only arise from
virtual processes, is surprising.1 We claim this is an inconsistency that can be resolved by proper
consideration of operators related by equations of motion. In particular, we demonstrate how the
equation-of-motion (EOM) operators modify the time dependence of Green’s functions using a toy
model of relativistic effective theory for a scalar hadron in time-dependent electromagnetic fields.
In addition, we discuss the difficulties involved in employing NRQED for the analysis of back-
ground field correlation functions obtained from lattice QCD, and argue that the most practical
approach is a hybrid scheme, which combines a relativistic hadronic theory with operator selection
based on their relevance in the nonrelativistic limit. For full details, see [3, 4].

2. Equation-of-motion operators and (non)relativistic QED

In formulating an effective field theory, the equations of motion are exclusively used to eco-
nomically reduce the number of low-energy parameters by eliminating redundant operators. The
physical consequences of the theory are not lost, because a theory containing EOM operators and
the reduced theory without such operators are equivalent, provided that the parameters in each
theory are determined by matching S-matrix elements. In external fields, however, the equiva-
lence between the full and reduced theory becomes subtle at the level of Green’s functions, where
on-shell conditions can be lost.

To expose this subtlety, consider the toy-model Lagrangian for a charged composite scalar

L toy
full = DµΦ

†Dµ
Φ−M2

Φ
†
Φ+

C1

2M4 Φ
†
Φ∂

2F2 +
C2

M4 F2(DµΦ
†Dµ

Φ−M2
Φ

†
Φ), (2.1)

1For a charged scalar hadron, we find a similar situation, where the initial energy shift in a uniform electric field
receives a contribution from the charge radius [3]: ∆E(~E) =

(
cA1 +

1
2 cA2

) ~E2

8M3 =− 1
2

[
4παE + Z2

2M3 − Z
3M 〈r

2
E〉
]
~E2.
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where the gauge covariant derivative is Dµ = ∂µ − iZAµ , and the electromagnetic field strength is
given by Fµν = ∂ µAν−∂ νAµ . In Minkowski space-time, we adopt the metric ηµν = δ µν{−1,1,1,1}.
No power counting has been utilized in Eq. (2.1), instead we merely select the last two operators to
illustrate our point. We also assume that the coefficients of these operators are proportional to the
electromagnetic coupling, α = e2

4π
� 1, and we will drop terms of O(α2) in what follows.

We first consider on-shell processes, where one can show that observables, such as the Comp-
ton amplitude, depend only on a particular linear combination of low-energy parameters, C1 +C2.
For off-shell processes appearing in loop diagrams, additional dependence on the C2 can arise; how-
ever, this must be canceled by the counterterms necessary to renormalize the theory. Because the
diagramatic approach is cumbersome, we instead employ field redefinitions to remove redundant
operators, see [5] and references therein. By invoking the field redefinition, Φ =

(
1− C2

2M4 F2
)

Φ′,
which corresponds to dressing the scalar field with photons, we obtain the reduced theory

L toy
reduced = DµΦ

′†Dµ
Φ
′−M2

Φ
′†

Φ
′+

C′1
2M4 Φ

′†
Φ
′
∂

2F2 +O(α2), (2.2)

with C′1 =C1+C2. The coefficient C′1 can be choosen so that Eq. (2.2) reproduces S-matrix elements
for processes involving the composite scalar and photons. In this way, the theories described by
Eqs. (2.1) and (2.2) are equivalent.

Now consider that Fµν in Eq. (2.1) is a time-dependent external field. Since the explicit
time dependence prevents the possibility of an on-shell condition leading to the absence of single-
particle poles, one cannot rely on a renormalization prescription to fix the behavior of the two-
point function at the pole. Instead we appeal to the Green’s function to resolve the parameters
C1 and C2. Consider the propagators for Φ′ and Φ given by G ′(x,y) = 〈0|T{Φ′(x)Φ′†(y)}|0〉 and
G (x,y) = 〈0|T{Φ(x)Φ†(y)}|0〉, respectively. These propagators are related to each other by

G (x,y) =
[

1− C2

2M4

[
F2(x)+F2(y)

]]
G ′(x,y), (2.3)

where contributions that are of order α2 are dropped. The propagators G (x,y) and G ′(x,y) gener-
ally have different time dependence. We cannot simply assume that the external field propagator
will be the one obtained by using the reduced theory, G ′(x,y). Because the most general effective
theory should have all possible operators, we should rather retain operators related by equations of
motion. Furthermore, we can access to both parameters C′1 and C2 from the time dependence of the
propagator, Eq. (2.3), where the parameter C′1 contributes to on-shell properties of Φ. Therefore, we
must retain operators ordinarily removed by equations of motion when we consider time-dependent
external field correlation functions.

Moving on from the toy-model example, we consider augmented NRQED for spin-half hadrons
by retaining certain EOM operators. We find the Lagrangian up to O(M−3)

L NRQED = ψ
†

[
iD0 + c2

~D2

2M
+ c4

~D4

8M3 + cF
~σ ·~B
2M

+ cD
[~∇ ·~E]
8M2 + icS

~σ · (~D×~E−~E×~D)

8M2

+cW1

{~D2,~σ ·~B}
8M3 − cW2

Di~σ ·~BDi

4M3 + cp′p

{
~D ·~B,~σ ·~D

}
8M3 + cA1

~B2−~E2

8M3 − cA2

~E2

16M3

+icM
{Di, [~∇×~B]i}

8M3 + cX0

[iD0,~D ·~E +~E ·~D]

8M3 + cX ′0

[D0, [D0,~σ ·~B]]
8M3

]
ψ, (2.4)
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where D0 = ∂0− iZA0 and Di = ∇i− iZAi. Here we impose Hermiticity and invariance under
P, T , and gauge transformations. The electric and magnetic fields ~E and ~B are given by standard
expressions, ~E =−∂0−~∇A0 and ~B=~∇×~A, respectively. Note that we have adopted the convention
that bracketed derivatives only act inside the square brackets.

The last two operators in Eq. (2.4) are ordinarily redundant, and for on-shell processes those
operators can be removed using the equations of motion

ψ
† [iD0,~D ·~E +~E ·~D]

8M3 ψ
eom
= −c2ψ

† [~D
2,~D ·~E +~E ·~D]

16M4 ψ. (2.5)

Similar results can be shown for the operator having coefficient cX ′0
, and what remains is the

O(M−3) standard NRQED Lagrangian. Off shell, however, these operators can modify Green’s
functions and need to be accounted for to describe lattice QCD correlations functions in external
fields. For example, for uniform electric fields the equality in Eq. (2.5) is no longer valid; the
right-hand side is zero, while the left-hand side is propotional to Z~E2. The non-zero cX0 term mod-
ifies the time dependence of the Green’s function obtained by using Eq. (2.4) in an essential way.
We stress that no modification is necessary to standard NRQED matching conditions that utilize
scattering amplitudes.

The coefficients cX0 and cX ′0
cannot be determined from the standard one- and two-photon

matching combined even with the implementation of Lorentz invariance [2, 6]. Instead, we find
that these coefficients can be resolved at the level of the relativistic effective theory, where EOM
operators turn out to be innocuous. For a relativistic charged spin-half hadron, we have [4]

L spin-half = Ψ̄

[
i /D−M+

κ

4M
σµνFµν − C1

M2 γµ [Dν ,Fµν ]+
C2

M3 σµν [Dρ , [Dµ ,Fνρ ]]+
C3

M3 FµνFµν

]
Ψ

+
iC4

M4 Ψ̄γµDνΨT µν − C5

M5 DµΨ̄DνΨT µν − C6

M5 DρΨ̄Dρ
ΨFµνFµν , (2.6)

where the matrix σµν is defined as σµν = i
2 [γµ ,γν ] as usual. Notice that the last three operators

will be relevant to O(M−3) in the relativistic limit, because they contain time derivatives acting on
the massive hadron field. After the phase transformation, Ψ→ e−iMx0Ψ, the nonrelativistic QED
action in Eq. (2.4) is obtained by performing a series of Foldy-Wouthuysen (FW) transformations
[7]. Combined with the one- and two-photon matching in the relativistic theory, we find

cX0 =−
1
2
(cD−Z−2κ) = κ− 2

3
M2〈r2

E〉, and, cX ′0
=

κ

2
− cW2 =−

2
3

M2〈r2
M〉, (2.7)

where 〈r2
M〉 is the magnetic radius. Our results for other parameters agree with the standard NRQED

matching conditions [2]. By taking these results into account, we obtain

∆E(~E) =−1
2

[
4παE −

(Z +κ)2

4M3

]
~E2. (2.8)

We immediately realize that the energy shift is free from the charge radius, 〈r2
E〉, and thus conclude

that there is no inconsistency between the background field method and the NRQED matching
provided EOM operators are retained.2

2Similarly, we can show that there is no inconsistency for the case of a scalar hadron. Consider the Lagrangian

4
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3. Euclidean correlation functions

Nonrelativistic QED provides an ideal framework to compute single-hadron propagators at
low energy because of the relatively simple form of interactions and the manifest power counting.
However, the correlation functions determined with lattice QCD are necessarily relativistic, and
in general the comparison with NRQED predictions is highly nontrivial; one must transform the
lattice correlators to nonrelativistic ones, i.e. the FW transformation for spin-half hadrons, and
the normalization factor for scalar hadrons which has been used to relate the relativistic field Φ

to the nonrelativistic one φ . To perform this transformation, one requires knowledge of hadronic
parameters and must accordingly propagate uncertainties through the transformation.

A more desirable approach is to compute correlation functions using relativistic effective the-
ory with operators chosen by their relevance in the nonrelativistic limit, where one avoids the lack
of manifest power counting of the relativistic theory. Of course, this relativistic approach is consis-
tent with the NRQED in terms of matching. Indeed, this semirelativistic philosophy is employed to
write down the relativistic theory for a charged spin-half hadron in Eq. (2.6). For uniform external
fields, the action is further reduced to 3

L spin-half
reduced = Ψ̄

[
/D+ME (B)+

κ

2M
σµνFµν

]
Ψ, (3.1)

where the mass parameters are given as ME = M + 1
2 4παEE 2 and MB = M− 1

2 4πβMB2. We
neglect higher-order effects from the electromagnetic field in ME , MB, and κ .

3.1 Uniform electric field

A charged hadron in a uniform electric field does not have definite energy eigenstates and
the correlation function will exhibit nonstandard time dependence. The integral form of a boost-
projected correlation function can be found in Ref. [8], which results in cumbersome numerical fits

density for a relativistic charged composite scalar [3]

L scalar = Dµ Φ
†Dµ

Φ−M2
Φ

†
Φ− C0

M2 Fµν Fµν Φ
†
Φ+

C1

M2 [∂µ Fµν ]Jν +
C2

M4 Tµν Dµ
Φ

†Dν
Φ− C3

M4 [∂
2
∂µ Fµν ]Jν ,

where the electromagnetic stress-energy tensor is Tµν =Fρ{µ F ρ

ν} and the vector current is Jµ = i(Φ†[Dµ Φ]− [Dµ Φ†]Φ).

Using the relation between the relativistic scalar field Φ and nonrelativistic scalar field φ , Φ(x) = e−iMt

[4(M2−~D2)]1/4 φ(x), we

perform the 1/M expansion of the above Lagrangian by keeping all terms up to O(M−3) and arrive at the scalar version
of Eq. (2.4) with

cX0 =−
1
2

cD−Z =−2
3

M2〈r2
E〉−Z.

In this derivation, field redefinitions are carefully carried out to preserve the time dependence of Green’s functions. The
same result can also be obtained by matching the relativistic Green’s functions to the nonrelativistic ones. In uniform
electric fields, the cX0 term makes a nonvanishing contribution to the energy shift and we find

∆E(~E) =−1
2

[
4παE +

Z2

2M3

]
~E2,

where the contribution from the charge radius, 〈r2
E〉, is absent due to inclusion of the EOM operator.

3Throughout this section all calculations are performed in Euclidean space-time with the metric η
µν

E = δ µν . For
instance, the Euclidean electric field ~E is related to the Minkowski electric field ~E by the analytic continuation ~E =−i~E.
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to lattice QCD data. To avoid this complication, we consider the nonrelativistic limit of the correla-
tion function using the velocity power counting of NRQED. The O(v4) charged scalar propagator
is given by

GE (τ) = e−η− ζ 2
6η

[
1− ζ 2

4η2

(
1− ζ 2

10η

)
− ζ 2

4η3

(
1− 5ζ 2

8η
+

17ζ 4

280η2 −
ζ 6

800η3

)]
, (3.2)

where η =ME τ ∼O(v−2) and ζ = ZE τ2 ∼O(v−1). For a charged spin-half hadron, the boosted-
projected correlation functions take the form,

GE
±(τ) =

(
1± κE

2M2

)
GE (τ), (3.3)

with η replaced by η =
√

M 2
E −

κ2E 2

4M2 ±ZE τ . The neutral scalar and spin-half propagators can be
obtained from Eqs. (3.2) and (3.3) by taking vanishing electric charge (Z = ζ = 0), respectively.

3.2 Uniform magnetic field

In contrast to the uniform electric field, there is no explicit time dependence for a uniform
magnetic field, which implies the existence of definite energy eigenstates. However, another com-
plication arises from the fact that a space-averaged correlation function receives contributions from
an infinite tower of Landau levels; the characteristic energy splitting between adjacent Landau lev-
els is ∆E = |ZB|/M for weak external fields, and thus the correlation function will suffer from
significant excited-state contamination. Therefore, it becomes important to isolate the ground state
by projecting the correlator onto the lowest Landau level using a ground-state harmonic oscillator
wave function, where in principle we can generalize this projection to an arbitrary nth Landau level
[9]. For a charged scalar, the propagator projected onto the nth Landau level has the simple form,
GB

n (τ) = Zne−Enτ , assuming that τ > 0. The energy En is given by

En =
√

M2 + |ZB|(2n+1)−4πβMMB2. (3.4)

For a charged spin-half hadron we further perform spin and parity projections denoted by ±1 and
±2, respectively, and obtain the propagator, GB

(n,±1,±2)
(τ)=Z(n,±1,±2)e

−E(n,±1 ,±2)
τ , using Schwinger’s

proper-time trick [10, 11], where the amplitudes and energies of these four eigenstates are given by

Z(n,±1,±2) =
1
2

 MB√
M 2

B ∓1 ZB+ |ZB|(2n+1)
±2 1

 , (3.5)

E(n,±1,±2) =
√

M 2
B ∓1 ZB+ |ZB|(2n+1)∓1

(
±2

κB
2M

)
. (3.6)

For a given Landau level, there are four distinct positive-energy eigenstates disentangled by using
spin and parity projectors, and each projected correlator decays with a simple exponential in Eu-
clidean time. Notice that the negative-parity amplitudes, Z(n,±,−), scale as ZB/M2 and vanish in
the nonrelativistic limit, as promised. From expanding energies in the weak magnetic field limit,
we find the first relativistic correction to the Zeeman splitting, E↑−E↓ =− B

M

[
µ−Z |ZB|

M2

(
n+ 1

2

)]
,

and previously overlooked B2 terms which contribute to the spin-averaged energy, 1
2(E↑+E↓) =

M + |ZB|
M

(
n+ 1

2

)[
1− |ZB|

2M2

(
n+ 1

2

)]
− 1

2

(
4πβM + Z2

4M3

)
B2. The results for neutral scalar and spin-

half hadrons can be obtained from Eqs. (3.4)–(3.6) by taking vanishing electric charge, respectively.
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4. Summary

Above we show that an inconsistency between standard NRQED for hadrons and the lattice
background field method can be resolved by augmenting NRQED with equation-of-motion oper-
ators which are normally redundant for on-shell processes. We determine the coefficients of such
operators by performing a brute-force nonrelativistic expansion of the underlying relativistic La-
grange density. After we discussed difficulties in utilizing NRQED for the analysis of lattice QCD
data, we argue that a desirable approach is the hybrid scheme based on a relativistic hadron effective
theory with operators selected by employing NRQED power counting, where a direct comparison
of lattice correlation functions is possible. Using this hybrid approach, we find that the relativistic
effective theory for hadrons in uniform external fields takes a simple form in which the low-energy
constants are directly related with physical observables, i.e. magnetic moment and electromag-
netic polarizabilities. Therefore, the background field correlation functions presented in Sec. 3.1
and Sec. 3.2 will be useful in extracting hadronic parameters from lattice QCD simulations with
uniform electric and magnetic fields.

Before we conclude our work, we want to discuss the applicability of our argument to the
investigation of the spin response of a nucleon, where the relevant operators are given as

L spin
e f f =−Ψ

†2πi
[
−γE1E1~σ · ~E × ~̇E + γM1M1~σ ·~B× ~̇B+ γM1E2σ

iE i jB j + γE1M2σ
iBi jE j

]
Ψ, (4.1)

where Ẋ = X
∂τ

denotes the Euclidean time derivative and X i j = 1
2(∂

iX j +∂ jX i). The four constants
γE1E1 , γM1M1 , γM1E2 , and γE1M2 are the spin polarizabilities. In contrast to the case of uniform electro-
magnetic fields, unfortunately, inclusion of nonuniform electromagnetic fields explicitly modifies
Green’s functions even in a relativistic theory. To determine the spin polarizabilities, therefore, one
must understand which EOM operators are relevant to nonuniform electric and magnetic fields, and
how these operators modify the time dependence of background field correlation functions.
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