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Exploiting the Banks-Casher relation, we present a direct determination of the chiral condensate

in two-flavor QCD, computing the mode number of the O(a)-improved Wilson-Dirac operator

below various cutoffs. We make use of CLS-configurations with three different lattice spacings in

the range of 0.05-0.08 fm and pion masses down to 190 MeV. Our data indicate a non-zero density

of eigenmodes near the origin and hence points to spontaneous chiral symmetry breaking. We

extrapolate our results to the continuum and chiral limit to give a result for the chiral condensate.
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1. Introduction

The chiral condensate, defined as expectation value of a quark-antiquark pair,

Σ ≡−1

2
〈ψ̄ψ〉 , (1.1)

plays a central rôle in QCD. It provides an order parameter for chiral symmetry breaking, a leading-

order low-energy constant of Chiral Perturbation Theory (ChPT), and it naturally appears in the

Operator Product Expansion. Recent related lattice QCD results are collected in the FLAG review

[1]. The present work discusses a determination of Σ, exploiting the Banks-Casher relation [2],

Σ = π lim
λ→0

lim
m→0

lim
V→∞

ρ(λ ,m) , (1.2)

with ρ(λ ,m) =
1

V

∞

∑
k=1

〈δ (λ −λk)〉 , (1.3)

where m is the current quark mass, iλk are the eigenvalues of the massless Dirac operator and V

is the four-volume. The spectral density ρ is renormalizable and can be computed on the lattice

numerically [3]. In lattice QCD with Wilson-type quarks, it turns out to be convenient to consider

the mode number ν(Λ,m) of the massive hermitian operator D†
mDm with eigenvalues α ≤ M =√

Λ2 +m2, which is renormalization-group invariant,

ν(Λ,m) = V

∫ Λ

−Λ
dλρ(λ ,m) (1.4)

νR(ΛR,mR) = ν(Λ,m) . (1.5)

The method was shown to work in Ref. [3] and applied to twisted–mass fermions in Ref. [4]. We

define the effective spectral density,

ρ̃R =
π

2V

ν2,R −ν1,R

Λ2,R −Λ1,R
, (1.6)

which agrees with Σ after taking the appropriate order of limits as in the Banks-Casher relation.

Note that any threshold effects are removed from ρ̃R as long as all Λi,R are chosen large enough.

Preliminary results have been presented in Ref. [5], the main physics results are published in

Ref. [6], while for a detailed discussion we refer to Ref. [7].

2. Chiral Perturbation Theory

At next-to-leading-order (NLO), continuum ChPT predicts for n f = 2 QCD [3],

ρ̃NLO
R (Λ1,R,Λ2,R,mR) = Σ

{

1+
mRΣ

(4π)2F4

[

3 l̄6 +1− ln(2)−3ln
( ΣmR

F2µ2

)

+ g̃ν

(

Λ1,R

mR

,
Λ2,R

mR

)

]}

,

(2.1)

where g̃ν(x1,x2), explicitly given in Ref. [5], appears to be a mild function in the considered range

of parameters [7]. F is the pseudo-scalar decay constant in the chiral limit, l̄6 an NLO low-energy

constant (LEC) and µ is a fixed scale. It is noteworthy that there are no chiral logarithms at fixed
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id L/a mπ [MeV] mπL a [fm] Rτexp Rτint(mπ) Rτint(ν) Rnit(ν) Ncnfg

A3 32 496(6) 6.0 0.0749(8) 40 7 47.36 55

A4 386(5) 4.7 5 53.28 55

A5 333(5) 4.0 5 3 36.00 55

B6 48 283(4) 5.2 6 24.00 50

E5 32 440(5) 4.7 0.0652(6) 55 9 6 35.52 92

F6 48 314(3) 5.0 8 29.60 50

F7 268(3) 4.3 7 26.64 50

G8 64 193(2) 4.1 8 24-48 50

N5 48 443(4) 5.2 0.0483(4) 100 30 11 28.16 60

N6 342(3) 4.0 10 128.0 60

O7 64 269(3) 4.2 15 76.00 50

Table 1: Parameters of the simulation. L is the linear spatial extent of the lattice, a the lattice

spacing [12], mπ the pion mass, R the ratio of active links in DD-HMC [13] (R = 1 in MP-HMC

[14]). τexp and τint denote the exponential and integrated autocorrelation time, resp., given in units

of molecular dynamics, nit the separation of configurations between subsequent measurements and

Ncnfg the number of configurations on which ν is measured.

ΛR, that ρ̃NLO
R is a decreasing function of ΛR = (Λ1,R +Λ2,R)/2 for any finite quark mass, and also

that in the chiral limit all NLO-corrections vanish in the two-flavor theory [3, 8].

NLO Wilson-ChPT, considering O(a) improvement and the generically-small-quark-mass

regime (GSM) [9], gives an additional term of the form mR/(Λ1,RΛ2,R) added to Eq. (2.1). The sign

of this term was argued to be positive [10, 11], which implies that ρ̃NLO,lat
R is a decreasing function

of ΛR also at finite lattice spacing (in the GSM-regime). We remark that those NLO discretization

effects, and any ΛR-dependence, are still absent in the chiral limit. The formalism of ChPT can be

used also to address finite-volume effects, which increase towards light ΛR.

3. Details of the simulation

We measure the mode number on configurations with two flavors of O(a)-improved Wilson

quarks, provided by the CLS-collaboration. The most relevant details for the present study are

depicted in Tab. 1, further information is detailed in Refs. [12, 15]. Finite-size effects and autocor-

relations are under control for all measurements. The mode number is computed for nine values of

ΛR in the range 20-120 MeV with a statistical precision of a few percent on all ensembles. Rational

polynomials are used to approximate the the spectral projector PM to the low modes of the Dirac

operator. Its expectation value is then evaluated stochastically with pseudo-fermion fields ηk,

ν =
1

N

N

∑
k=1

〈(ηk,PMηk)〉 , M =
√

Λ2 +m2 . (3.1)

4. Results

Fig. 1, left, shows the results for the mode number for all ensembles. It exhibits a roughly linear

dependence on aM in all cases up to approximately 100-150 MeV. A phenomenological low-order
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polynomial fit indicates that in the considered range roughly 90% of ν is given by the linear term.

The effective spectral density ρ̃R shows a non-zero and flat behavior in ΛR at fine lattice spacings

and light quark masses. As an example, the results of ensemble O7 are shown in Fig. 1, right.

To extrapolate to the continuum and chiral limit, some analytic guidance is needed. In this

respect, first studies indicated that higher-order effects of ChPT are apparent in the data and corre-

spondingly the functional form at finite lattice spacing is not entirely clear in the considered range

of parameters [5]. For this reason, we attempt to build a clean fitting strategy where different effects

can be distinguished clearly. Such a strategy is based on performing first the continuum limit, and

only then removing the small corrections stemming from finite mR and ΛR. To do so, we interpo-

late ρ̃R to three values of the quark mass (mR = 12.9,20.9,32.0 MeV) at each lattice spacing. A

continuum extrapolation is then performed separately for each pair of (ΛR,mR), examples of which

are shown in Fig. 2. The linear a2-dependence, expected from Symanzik effective theory for the

O(a)-improved theory, is respected well by the data. It is noteworthy that the discretization effects

exhibit a non-trivial dependence on (ΛR,mR), but appear fairly mild at the lightest points.

As a result of the extrapolation, we obtain ρ̃R in the continuum, where its non-zero values at

light (ΛR,mR) point to dynamical chiral symmetry breaking. This motivates to use ChPT to remove

the remaining small corrections. We consider a fit function based on generalized NLO ChPT,

ρ̃R = c0(ΛR)+ c1mR + c2mR

[

g̃ν

(

Λ1,R

mR

,
Λ2,R

mR

)

−3ln

(

mR

µ

)]

, (4.1)

where c0(ΛR) = Σ = const. at NLO. The continuum data is described well by this ansatz (the

correlated fit gives χ2/dof=16.4/14), the extrapolation is of the order of the statistical error, and we

obtain the results for c0(ΛR) shown in Fig. 3. The plateau-like behavior for ΛR ≤ 80 MeV indicates

the NLO range, and a corresponding fit gives Σ1/3 = 261(6) MeV in the MS scheme at 2 GeV.

To substantiate the result, we consider a second strategy to extract the chiral condensate from

the data on the effective spectral density. After the separate treatment of different effects in the

first strategy, we now attempt to perform a combined fit in (ΛR,mR,a) at once. The advantages are

that this approach does not require an interpolation in mR but includes all data, and furthermore

needs fewer fit parameters compared to the first strategy. However, ChPT is used from the start and

the discretization effects have to be modelled. We assume a linear dependence in a2 and mR, but

still allow for an arbitrary ΛR-dependence, inspired by Symanzik effective theory and the chiral

power expansion. It is worth noting that the model complies with the results of the first strategy

and includes NLO Wilson-ChPT [9] as a special case. We find that the fit describes the data well

and that the results agree very well with the ones of the first strategy. Having abundant degrees

of freedom in the fit, we use the second strategy to estimate the systematic uncertainty of the final

result by performing various different fits. An upward shift is found when neglecting data at coarse

lattices, while a downward shift is found when including higher-order terms O(Λ2
R,m

2
R) in the fit.

5. Conclusions

We presented a determination of the chiral condensate based on an extensive discussion of the

spectral density of the hermitean Wilson Dirac operator. Our final result is

[ΣMS(2 GeV)]1/3 = 261(6)(8) MeV , (5.1)
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Figure 1: First look at the numerical data. Left: Mode number ν for all ensembles vs. the bare

dimensionless cutoff aM. Note the approximate linearity and the high number of modes achieved

for small quark masses. Right: Effective spectral density ρ̃R vs. the cutoff ΛR for the ensemble with

the lightest quark mass at the finest lattice spacing (O7). Note the non-zero flat behavior, which

can be interpreted as a first hint for dynamical chiral symmetry breaking.
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Figure 2: Continuum extrapolation of ρ̃R, performed individually for each pair (ΛR,mR). Shown

for three values of ΛR covering the entire range, and for the lightest (left) and the heaviest reference

quark mass (right). Note that the data agrees well with the linear a2-dependence expected in the

O(a)-improved theory. The discretization effects exhibit a non-trivial dependence on (ΛR,mR), but

appear mild at the lightest point.

where the first error is statistical and the second one systematic. As a consistency test of dynamical

symmetry breaking and ChPT, we consider its NLO prediction for the quark mass dependence of

the pion mass. The latter is known as GMOR-relation and we show its prediction based on our

measurement of the chiral condensate together with the direct measurements of the quark and pion

masses in Fig. 4. The relation appears to be fulfilled to very good precision in the range considered.
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Figure 3: The effective spectral density ρ̃R in the continuum and chiral limit. The flat and non-zero

behavior observed for Λ ≤ 80 MeV is consistent with NLO ChPT, a plateau fit in this range yields

a prediction for the chiral condensate given in the text.
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Figure 4: Consistency of the determined chiral condensate with the quark mass dependence of

the pion mass as expected from the GMOR-relation. The pion mass squared M2
π is shown vs. the

renormalizion-group-independent (RGI) quark mass, normalized to 4πF (≈ 1 GeV), where F is

the pseudo-scalar decay constant in the chiral limit (taken from [6]). The direct measurements

(red symbols) are extrapolated to the continuum as described in Ref. [6], while the (central) solid

line represents the GMOR contribution to the pion mass squared, computed by taking the direct

determination of the chiral condensate through the spectral density. The thinner solid lines denote

the statistical error, the dotted-dashed ones the sum of statistical and systematic one.
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