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Partially quenched chiral perturbation theory assumes that valence quarks propagating on gauge

configurations prepared with sea quarks of different masses will form a chiral condensate as the

valence quark mass goes to zero. I present a counterexample involving non-degenerate sea quarks

where the valence condensate does not form.
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Figure 1: A schematic representation of how the pseudo-scalar masses depend on the up quark mass with

a fixed non-vanishing down quark mass. The theory maintains a mass gap even at vanishing up quark mass.

Partial quenching is a common approximation used to extract additional information from

sets of field configurations obtained in dynamical lattice gauge simulations. The idea is to take

these configurations, generated with some set of fixed “sea” quark masses, and then study quark

propagators using different “valence” quark masses. From these propagators, one then constructs

“valence” bound states and studies their properties. Of course when the sea and valence masses are

equal, this is just the normal lattice prescription for obtaining hadronic properties.

The conventional assumption is that, as the valence masses go to zero, a valence quark con-

densate will form on which one might expect the valence pion masses to go to zero with the square

root of the valence quark mass. The point I wish to make is that in some cases this assumption can

fail. I will show an example, using two non-degenerate sea quark masses, where the valence pions

do not become massless in the valence chiral limit.

Consider two non-degenerate quark flavors to which I give the conventional names“u” and “d.”

The standard chiral symmetry prediction for the dynamical pions is that their mass is controlled by

the average quark mass

M2
π ∼

mu +md

2
+O(m2

q). (1)

Now consider fixing the down quark mass to some non-vanishing value, md 6= 0, and take the up

quark mass to zero. Then we expect the pion mass to remain finite

M2
π ∼

md

2
+O(m2

q). (2)

In particular we expect no singularity in physics for mu in the vicinity of zero.

Without a singularity at vanishing up quark mass, it is natural to imagine continuing the up

quark mass to negative values. In standard chiral perturbation theory the neutral pion mass con-

tinues to drop until at some point it becomes negative. At this location a second order transi-

tion is expected into a CP violating phase with an expectation value for the neutral pion. This

phase was anticipated by Dashen some time ago [1]. For a recent discussions of these issues see
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Refs. [2, 3, 4, 5]. The qualitative meson mass spectrum as a function of the up quark mass is

sketched qualitatively in Fig. (1).

Considerable insight into the nature of the chiral limit in QCD was provided some time ago by

Banks and Casher [6]. They argued that a finite density of small eigenvalues for the Dirac operator

could generate a jump in the condensate ψψ as the quark mass passes through zero. This is exactly

as expected from chiral perturbation theory with degenerate quarks.

The situation with a single massless quark, however, generates a conundrum for this picture.

As discussed above, as the sea up-quark mass passes through zero, no singularity is expected.

In particular, there should be no jump in the up quark condensate 〈uu〉 if the down quark mass

remains finite. Following the Banks Casher argument, the density of up quark eigenvalues ρu(λ )

must vanish at λ = 0. For another discussion of this, see Ref. [7].

Now we bring in two degenerate valence quarks and consider taking mval to zero while the

dynamical up quark mass is maintained to vanish. In the limit that the valence quarks and the up

sea-quark have the same mass, their propagators become identical.

Dval → Du as mval → 0. (3)

We conclude that with a vanishing dynamical up quark mass we must have

ρval(0)→ ρu(0) = 0. (4)

Thus the valence quarks can not condense, there is no valence chiral symmetry breaking, and there

is no expectation for the valence pion mass to go to zero. This is in direct contradiction to the usual

assumptions of partially quenched chiral perturbation theory.

It is well known that in the fully quenched case, i.e. with no dynamical quarks, problems

arise when the masses for valence quarks are taken to zero. In general, configurations will be

encountered where the Dirac operator is not invertible and the propagators do not exist. In the

example presented above, the dynamical quarks suppress such configurations so the propagators

do exist, although their chiral properties are strongly modified.

While this is the basic result, some technical comments are perhaps in order. The discussion

above is based on the expectation that the four dimensional free energy density behaves smoothly

as the up quark mass passes through zero. The full partition function is the exponential of the

volume times this density, and should be well behaved throughout the small mass region, including

negative mass.

There are some peculiarities of the path integral at negative quark mass. In this situation gauge

field configurations can appear for which the fermion determinant is negative. This is somewhat

non-intuitive; for instance the topological susceptibility, despite being the expectation of a square,

is itself negative [8]. Indeed, the susceptibility diverges to negative infinity as the Dashen phase is

approached.

It should be noted that the expectation 〈ψψ〉 for the up quark does not vanish at zero mass.

This does not come from spontaneous chiral symmetry but rather is a direct consequence of the

chiral anomaly. As discussed in [7] and [9] , this expectation arises from a cancellation of the mass

suppression of unit topology with an inverse mass dependence in this particular observable. As such

it is tied not to a density of small eigenvalues, but rather to exact zero modes of the Dirac operator.
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This effect is only present when a single quark becomes massless; with degenerate light quarks

further factors of the mass suppress topology and the Banks-Casher picture becomes relevant.

At this meeting, Verbaarschot and Wettig [10] have suggested that it might be possible for the

eigenvalue density at the origin to remain finite if there is a cancellation at negative mass between

configurations of non-trivial topology. However, other than the above contribution to 〈ψψ〉 from

unit topology, effects of higher winding number sectors are suppressed by powers of the quark

mass. Also, for local observables, at large volume one can avoid these issues by working in the

zero winding number sector [11].

In summary, I have presented a situation where partially quenched chiral perturbation theory

can fail. One should be particularly suspicious of the approach whenever the valence quark masses

become small compared to the average sea quark mass. This conclusion is a direct consequence of

the anomaly and applies for any valid lattice fermion formulation.
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