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1. Introduction

Fixing to the smooth, covariant Coulomb and Landau gauges can be useful for lattice field

theorists. The matching of lattice results to continuum perturbation theory, of particular interest

for vertex functions, demands the use of a fixed gauge, usually Landau. Coulomb gauge has other

benefits; it can be used for the creation of gauge-fixed wall source fermion propagators or for

measurements of the static quark potential.

The Landau and Coulomb are two of the easiest gauges (that have useful continuum analogs)

to implement on the lattice as their gauge conditions can be defined as the minimisation of a func-

tional. Such a description allows us to define a smooth deformation of the fields in which we

can systematically move toward the local minimum of the functional. This is the aim of many

numerical optimisation techniques and several methods are available [1, 2, 3].

Conjugate gradient methods were first introduced in [4] to solve systems of equations and were

generalised to the associated problem of solving non-linear non-quadratic functions in [5, 6, 7].

We show how a non-linear conjugate gradient method can be used with Fourier Acceleration to

create a very fast gauge fixing procedure that has good performance for both Coulomb and Landau

gauge for both exact and approximate definitions of the gauge field. We also comment on the

ineffectiveness of fixing to Landau and Coulomb gauge using a so-called “optimal” steepest descent

(SD) routine that tunes the step-size to best minimise the functional at each step.

2. Fields and Definitions

Lattice gauge fields (the Aµ’s) of an Nd-dimensional, strongly interacting gauge theory are

formally defined by their path-ordered parallel transport matrices (known as lattice links),

Uµ

(

x+a
µ̂

2

)

= P[eig0

∫ x+aµ̂
x Aµ (x)dxµ ]≈ e

iag0Aµ

(

x+a
µ̂
2

)

, (2.1)

and are well described as living halfway between the sites x and x+ aµ̂ of the lattice, where a is

the lattice spacing, g0 is the bare coupling and µ is the field’s polarisation direction. The links are

elements of the group SU(NC), the fields are elements of the Lie Algebra su(NC) and NC is the

number of color charges of the theory.

The fields cannot be transformed in a gauge-covariant manner directly in lattice simulations,

instead they have to be altered by gauge transformation,

U
(g)
µ

(

x+a
µ̂

2

)

= g(x)Uµ

(

x+a
µ̂

2

)

g(x+aµ̂)†
. (2.2)

Such a transformation preserves the gauge invariance of the action.

The techniques we consider in this work for fixing the gauge (gradient descent methods) re-

quire access to the gauge fields directly. There is some freedom in the choice of field definition:

a common one is what we call the “Hermitian Projection” and is accurate only up to terms of
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O

(

ag0Aµ

(

x+a
µ̂
2

)3
)

,

ag0Aµ

(

x+a
µ̂

2

)

=
Uµ

(

x+a
µ̂
2

)

−Uµ

(

x+a
µ̂
2

)†

2i
−

1

2iNC

Tr

[

Uµ

(

x+a
µ̂

2

)

−Uµ

(

x+a
µ̂

2

)†
]

· INc×Nc
.

(2.3)

Some authors have also investigated the use of exact logarithmic fields [8, 9]. These will be used

here to illustrate the general performance properties of our Fourier Accelerated Conjugate gradient

algorithm.

Cayley-Hamilton theorem states that every matrix is a solution of its own characteristic equa-

tion. In terms of our links the following finite expansion can be used (where the f’s are necessarily

complex and I is the identity matrix) [10],

Uµ

(

x+a
µ̂

2

)

= f0 · INC×NC
+ f1Aµ

(

x+a
µ̂

2

)

+ · · ·+ fNC−1Aµ

(

x+a
µ̂

2

)NC−1

. (2.4)

The f’s are the solution to the following Vandermonde equation,













1 q0 q2
0 · · · q

NC−1
0

1 q1 q2
1 · · · q

NC−1
1

...
...

... · · ·

...

1 qNC−1 q2
NC−1 · · · q

NC−1
NC−1

























f0

f1

...

fNC−1













=













eiq0

eiq1

...

eiqNC−1













. (2.5)

The q’s are the Eigenvalues of Aµ

(

x+a
µ̂
2

)

and the eiq’s are the Eigenvalues of the link matrix

Uµ

(

x+a
µ̂
2

)

. For our logarithm, we compute the eiq’s from the characteristic equation of the link

matrix Uµ

(

x+a
µ̂
2

)

and take their complex argument to define the q’s on the principal branch. The

solution to general Vandermonde systems can become numerically unstable, but for SU(3) well-

behaved functions for the f’s in terms of the q’s can be used [10]. This leads to a computationally

efficient and numerically stable definition for the principal logarithm of SU(3) matrices,

ag0Aµ

(

x+a
µ̂

2

)

=
f ∗2 Uµ

(

x+a
µ̂
2

)

− f2U
†
µ

(

x+a
µ̂
2

)

−2iℑ( f0 f ∗2 ) · I3×3

2iℑ( f1 f ∗2 )
.

We define the lattice finite difference of the gauge fields by,

a∆µAµ(x) = ∑
µ

[

Aµ

(

x+a
µ̂

2

)

−Aµ

(

x−a
µ̂

2

)]

. (2.6)

It will be useful to monitor our algorithm (at it’s nth iteration) by defining the quantity (V is

the lattice volume),

Θ(n) =
1

NcV
∑
x

Tr

[

(

a∆µag0A
(n)
µ (x)

)2
]

. (2.7)
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3. Fourier Accelerated Steepest Descent

The continuum gauge condition for Landau gauge (and Coulomb with µ only in the spatial

directions) is ∂µAµ(x) = 0, and the lattice analog of this is a∆µag0Aµ(x) = 0. This occurs at the

minimum of the gauge fixing functional,

F(U) =
1

NCNdV
∑
x,µ

Tr

[

Aµ

(

x+a
µ̂

2

)2
]

. (3.1)

A general steepest descent step that drives the gauge fields toward a local minimum of the

functional (and thus reduces a∆µag0Aµ(x) to 0) is,

g(x) = e−iαa∆µ ag0Aµ (x), (3.2)

followed by a gauge transformation of the links (Eq.2.2). The parameter α is a small, positive

tuning parameter with initial guess sufficiently close to the solution. This is repeated until some

convergence criterion is met.

The authors of [11] suggested that a re-scaling of the Eigenvalues of the Abelian Laplacian op-

erator (∆2Aµ(x)) in momentum space was sufficient to reduce some of the critical slowing down in

each steepest descent iteration, and is effectively a preconditioner. A Fourier Accelerated Steepest

Descent (FASD) iteration is,

g(x) = e
F̃

−iα p̂2
Max

V p̂2 Fa∆µ ag0Aµ(x)
. (3.3)

p2
Max takes the values 4Nd and 4(Nd − 1) for fixing to Landau and Coulomb gauge respectively.

F and F̃ are Forward and Backward Fast Fourier Transforms (FFTs using FFTW [12] in our im-

plementation). We use the definition of lattice momentum (the nµ ’s are Fourier modes, Lµ is the

lattice length in the µ direction),

p̂2 = 2

(

Nd −∑
µ

cos

(

2πnµ

Lµ

)

)

. (3.4)

The rest of this paper will present results from gauge group SU(3), Nd = 4 dimensional lattice

gauge theories. In particular, N f = 2+ 1 Iwasaki gauge DWF configurations are used. We will

consider three different lattice volumes; the 323
×64 data has a lattice spacing of a−1

≈ 2.32 GeV,

the 243
×64 and 163

×32 configurations’ a−1
≈ 1.75 GeV [13].

3.1 Optimal FASD

Many popular techniques for fixing the gauge require some form of tuning to be effective, with

FASD and over-relaxation being examples. The tuning parameters can depend on the bare coupling,

the gauge action, the field definition and the functional being used. If the tuning parameter is

too large the routine will not converge, too small and the routine will have poor performance.

The optimal steepest descent routine, and the Fourier Accelerated Conjugate Gradient algorithm

discussed later do not need to be tuned.

We can define a so-called “optimal” steepest descent routine by tuning the parameter αn to be

the one which best minimises the gauge functional (Eq.3.1) at each iteration of the algorithm. Eval-

uating the optimal parameter αn exactly (by e.g. a binary search) would be prohibitively expensive

4
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as each evaluation of what we call a probe α ′ requires both a lattice-wide gauge transformation and

subsequent functional evaluation. The approach we take instead is to evaluate a selection of probe

α ′’s and create a cubic spline interpolation of the probes for which we can solve for the minimum

and hence provide a good approximation to the actual minimum. Such a process is called an ap-

proximate line search and will be integral to the non-linear conjugate-gradient method introduced

in the next chapter.
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(a) Cubic spline interpolation.
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(b) Spline minimum history

Figure 1: Fig.1a shows the cubic spline interpolation and the computation of the spline minimum. Fig.1b

shows the history of the spline minimum per iteration of the optimal FASD from an example 163
× 32

configuration.

Fig.1a shows the cubic spline interpolation for a group of points for an FASD step. Fig.1b

illustrates the typical history of the cubic spline minimum per iteration of the optimal FASD Landau

gauge fixing routine, taken from a single 163
× 32 configuration. We see that after the first 50 or

so iterations the best αn is roughly constant at around 0.08 which is consistent with the best tuning

parameter of similar configurations found in the literature [11, 9]. The approximate optimal αn

oscillates each iteration around a central value, illustrating the routine correcting itself from an

over or under-estimate of the optimal αn.

As the optimal FASD shows a long plateau of the best α with little variation the cost of the

line search is not worthwhile for the FASD algorithm. This is because it is roughly N× the cost of

one fixed-α iteration (N is the number of probe α ′s) and we need at least N = 3 to compute a cubic

spline interpolant. If the number of iterations is not reduced by a factor of N the optimal FASD is

less optimal (in the sense of time taken to reach a desired precision) than the fixed-α FASD, which

we find to be the case.

4. Conjugate Directions in Gauge Fixing

A detailed description of the of the Fourier Accelerated Conjugate Gradient (FACG) algorithm

is presented in Alg.1 and Alg.2 of [14] and will not be reproduced here.

Fig.2a shows a histogram of the cubic spline minimum taken from the probes (0.0,0.15,0.3

,0.45,0.6) for every iteration of the above configuration. We can see that most of the optimal α’s

lie in the range [0,0.3] and so we choose the three probe evaluations (0.0,0.15,0.3) for our routine.

5
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(c) Improvement over the FASD, logarithmic fields

Figure 2: Fig.2a shows the optimal α for each iteration n of the FACG algorithm for an example 163
× 32

configuration being fixed to Θ(n) < 10−14. Fig.2b shows the number of iterations required for the (fixed-α)

FASD and FACG algorithms to reach the same accuracy for the same configuration, using the Hermitian

Projection definition of the gauge fields. Fig.2c illustrates a measure of the effective speed up of our FACG

compared to our FASD routines for the logarithmic field definition for 3 different lattice volumes.

The probe at 0.0 is very beneficial in bounding the minimum and is cheap to evaluate as no gauge

transformations are needed. If the spline minimum is negative, we set α to 0.0 (i.e. we generate

a new descent direction) or if it is greater than 0.3 we set it to 0.3 knowing that the algorithm will

accommodate for a sub-optimal step.

We provide a comparison of the FACG algorithm (using the 3 probes) to the fixed-α FASD

algorithm in Fig.2b showing the number of iterations required to reach θ (n) < 10−14 for a single

configuration, although this behaviour is ubiquitous. We see that for this configuration there is a

factor of around 10 reduction in the number of iterations to reach a high level of convergence. As

mentioned for the optimal FASD routine, if the factor of reduction in the number of iterations is

greater than the number of probe evaluations (N) then the routine is beneficial.

In [14](Fig.1) we show for the Hermitian Projection definition of the fields a factor of 2 to 4

improvement in the time taken to converge to a high fixed accuracy was obtained for the FACG

routine compared to the FASD. In Fig.2c, we show that such speedup is also available for the

logarithmic field definition for the three volumes considered. The measure of improvement was

6
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taken to be the time taken for 25 randomly gauge transformed copies of the same configuration at

each volume for the FASD algorithm divided by the time taken for the FACG algorithm.

5. Conclusions

We have presented results using the FACG algorithm for fixing to Landau and Coulomb gauge.

The method presented is faster than our implementation of the FASD algorithm for both logarithmic

and Hermitian Projection field definitions. We have illustrated why the optimal FASD algorithm

does not provide a faster method than the fixed-α procedure, and have shown why the literature

value of α = 0.08 is often a good choice for the tuning parameter, although the exact optimal tuning

parameter is dependent on several factors. Unlike the fixed-α FASD or over-relaxation methods,

the FACG does not require one to tune a parameter.

The FACG algorithm converges in fewer iterations than the FASD, and requires only one set

of FFTs per iteration; if FFTs are particularly costly this method will show greater improvement

over the FASD than presented here. The FACG method (as it is a gradient descent method) allows

for options where standard relaxation techniques cannot be used; different gauge field definitions

or alternate functionals can be accommodated easily.
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