
P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images

Yutaka KAWAI∗
High Energy Accelerator Research Organization (KEK)
E-mail: yutaka.kawai@kek.jp

Adil HASAN
University of Liverpool
E-mail: adilhasan2@gmail.com

Wataru TAKASE, and Takashi SASAKI
High Energy Accelerator Research Organization (KEK)
E-mail: wataru.takase@kek.jp, takashi.sasaki@kek.jp

The cloud offers scientists a lower barrier to use of the system. But, scientists using cloud mid-
dleware are faced with the having to create, manage and deploy the virtual images on the cloud
infrastructure. In this paper we describe an application that uses the IBM Image Construction
and Composition Tool (ICCT) to capture and create images. We describe the integration with the
iRODS data management system that provides management allowing the user to keep track of
which images are currently used and to switch between instances.

The International Symposium on Grids and Clouds (ISGC) 2014,
March 23 - 28, 2014
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:yutaka.kawai@kek.jp
mailto:adilhasan2@gmail.com
mailto:wataru.takase@kek.jp
mailto:takashi.sasaki@kek.jp

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

1. Introduction

This paper describes a practical solution to capture and configure virtual machines(VMs) with
different kinds of cloud providers. A cloud provider is a service provider which can offer storage
and software services on a private or public network as a cloud [1].

Scientific research often entails many iterations of software application development as the
study becomes more and more understood. If the work spans a long enough duration then the
applications may need to be transpored from one operating system to another. When making use
of cloud resources this entails researchers setting up their cloud images repeatedly for each new
iteration of the software. In addition researchers may require both an old version and new version
of the software in order to validate a new approach. Setting up each cloud component node from
scratch requires a lot of effort. An automated and simple system to capture, deploy, and install the
images on a cloud system is required.

In this paper we focus on the Open Virtualization Format (OVF) [2] that is an open standard
for virtual images. We designed a Python application that enables configuration of the OVF con-
figuration file in an Open Virtualization Format Archive (OVA) [2] file and stores the modifed
OVA files according to the metadata repository that specifies a Grid system. Our implementation
includes the IBM Image Construction and Composition Tool (ICCT) [3] commands for capturing
virtual images. Metadata and script files are registered in a metadata repository to configure VMs
in our implementation.

Motivations for this approach are given in Section 2. Section 3 describes what the ICCT is.
Section 4 shows the system overview how to access ICCT and the metadata repository. Next, the
details of the metadata repository are presented in Section 5 and samples of our implementations are
described in Section 6. Then, our results and future work are covered leading to our conclusions.

2. Motivation

We have found that the users of cloud systems need to create many different images for their
software during the course of the lifetime of their project. A management system that provides
an automated way to capture, deploy, and install the images on the cloud system is needed. For
example, an experiment has developed reconstruction software 10 years ago and the code relies
on legacy libraries and required libraries from an old OS. But, naturally the experiment has since
moved forwards with the new applications which are written using new software and libraries run-
ning on a new operating system. Even under such new environments, experimenters cannot avoid
reprocessing old data with the old reconstruction code to verify their research. We can also consider
the case of Grid systems. A Grid system has several server components which form parts of work-
flow and contains computing and storage resources. In the business case, Birgit Pfitzmann et al.
already claimed, "Dependencies between software components in a business application, as well as
with other components that may reside on the same servers or even in the same application servers
or web servers, are a key complexity factor of current IT management." [4]. These dependencies
make the business application vulnerable to change in the underlying computing infrastructure.

One of the ways to reduce this vulnerability is to manage images for VM setups. The relations
between VMs are essential for Grid systems, but the current capture and deploy image system

2

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAICreate / Deploy VM images

Mar 27, 2014 Yutaka Kawai, KEK/CRC - ISGC2014 @ Taipei 8

Comp-A

Comp-B

Comp-C

Grid System

Capture as images

Registers in
Metadata Repository

configurations

Figure 1: Capture images and register the configurations.

cannot take account of relations between VMs. We found creating images from the current running
VMs and modifying the image configuration enables us to easily setup VMs for the Grid system
(Figure1).

3. What is ICCT

ICCT is a web application that simplifies and automates virtual image creation [5]. The im-
ages are created in the OVA [2] file format and they can be used for public and private cloud
environments.

ICCT has two main functions: one is basic image creation and the other is bundling software.
ICCT can create a basic image by using ISO installer file or by capturing running VMs. The
captured image is saved as an OVA file and stored in the same cloud provider where the captured
VMs run. For example, if we capture a VM running on Linux KVM host, the captured image is
stored in the workload directories in the KVM host. The ICCT does not care about its storage
capacity. ICCT just shows us the URL location of the OVA files. Then, we can easily download
the images with the URL.

The second main function for the ICCT is to create a software bundle image. This function
enables us to create a virtual appliance. We can consider the bundle of software as consisting of
the following tasks: "install", "configure", and "reset". The "install" tasks are used for installations
of some specific applications. The "configure" tasks are used for script executions to configure the
installed applications. The last "reset" tasks are for clean up the workspace of the installations and
configurations. Any scripts and binary software can be bundled for each tasks.

Using OpenStack [6] might be an alternative way to create VM image from running VM.
However, it just captures the image with snapshot functions so we need to directly install software
on each VM before capturing the VM when using OpenStack [7]. The software bundle function of
ICCT is a powerful solution to easily create a software bundled VM image.

3

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

EM
I I
N
FS
O
‐R
I‐2

61
61
1

Figure 2: gLite service components

In this paper, we create basic images by capturing running VMs on the x86 Linux based KVM.
We also describe how these images are managed by a data management system with ICCT.

4. System Overview

4.1 Grid System

We consider the scenario of the operation of a grid system consisting of several components
including computing and storage resources. In order to keep the example simple any storage re-
source is regarded as a server component. For example, in the case of European Middleware
Initiative (EMI) [8] - gLite [9] a well-known grid system, the gLite system components are shown
in Figure 2 [10] and we can see the grid system consists of several components. The compute
element in the architecture consists of CREAM, BLAH, and a local resource management system
like Torque with Worker Nodes. Several servers are assigned to the above components. Then, we
can show a very easy example of the grid system in Figure 3.

This example grid system consists of three components. Now consider the problem of mi-
gration of the grid to other clouds. The current cloud site is cloud-A, and other cloud sites are
available: cloud-B and cloud-C (Figure4). We want to setup the same grid system on cloud-B and
cloud-C.

In this example, all three clouds are provided by x86 Linux based KVM.

4.2 ICCT location

ICCT can capture running VMs on the cloud and store the images in the cloud storages. ICCT
should access the current cloud provider but it can be located outside of the cloud. Figure5 shows
the relations among clouds, clients, and ICCT.

4

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

How about Grid systems?
▸ Grid system has several server

components which function parts of
workflow and contains computing and
storage resources.

Mar 27, 2014 Yutaka Kawai, KEK/CRC - ISGC2014 @ Taipei 5

Comp-A

Comp-B

Comp-C

Grid System

- Comp-A functions for …

- Comp-B functions for …

- Comp-C functions for …
with Comp-A and Comp-B …

…

Figure 3: Grid system consists of server components

Grid Systems on Cloud
▸ Most of current Grid systems are built on

Cloud infrastructures (including both of
private and public ones)

Comp-A
Comp-B

Comp-C

Grid System

Cloud-A

Cloud-B

Cloud-C

Figure 4: Grid are built on clouds.

Capturing VM images
▸ ICCT can capture running VMs on the

cloud and store the images in the cloud
storages.

Comp-A
Comp-B

Comp-C

Grid System

Cloud

ICCT

Web portal capture

Figure 5: A Grid built on a cloud.

4.3 Metadata repository server

The metadata repository server is required to register the information of OVF properties [2].
An OVA contains OVF file that describes the information of virtual machines. Some OVF proper-
ties can be modified following the OVF standard, so we store new values of the properties in the
metadata repository so that we create a new OVF file for a new OVA file to deploy to new cloud

5

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

Register metadata and download
▸ The properties should be registered to deploy
▸ Users can download the captured images.

Comp-A
Comp-B

Comp-C

Grid System

Cloud

ICCT

command
Metadata Repository

download

Figure 6: Register metadata and download images.

infrastructure. Creating OVA file following the standard is done using the tar command to archive
the OVF file and its disk images. iRODS [11] is used as a metadata repository. The reason is
that iRODS is already operated in several computing research centers of the high energy research
areas like High Energy Accelerator Research Organization (KEK) [12] and have shown its actual
performance there [13]. Further information of the metadata repository is described in Section5.

It is enough for the metadata repository server to be accessed by the client(Figure 6). If we
want to automatically extract the current grid configuration with some special agents, the metadata
repository server should also be accessed by a cloud provider. This paper is not concerned with the
accessibility between the cloud provider and metadata repository server.

4.4 Client Storages

Storage on the client side is required in order to store OVF files temporally. If we want to
deploy all of grid components simultaneously then this will require a lot of storage capacity. How-
ever, storing them sequentially requires only one component to be temporarily stored at any one
time. Figure6 shows how to download OVA files using the metadata repository.

4.5 Deploying VMs

The captured and modified OVA files can also be deployed to other cloud providers(Figure 7).
As for our future work, we need to develop a web-portal based system which can handle OVA
images to deploy them.

5. Metadata Repository

Today’s capturing and deploying systems care only about VMs. However, they do not care
about relations between VMs (in other words, "system configurations"). We make use of a metadata
repository to address this situation. The metadata repository should contain each VM configuration
in a tree structure. It should also store binaries and scripts to setup VMs.

6

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

command
deploy

Comp-A
Comp-B

Comp-C

Grid System

Other Clouds

Some
Deploy Agents

Figure 7: Deploy OVA files to clouds (Future work).

Information tree structure
▸ Grid entry has several Comp entries.
▸ Each Comp entry has three entries:

“install”, “config”, and “reset”
▸ “install”, “config”, “reset” contains binary

applications and scripts to set up.

Mar 27, 2014 Yutaka Kawai, KEK/CRC - ISGC2014 @ Taipei 20

bin --> stores application files
scripts --> stores script files

install

config
reset

Grid-01

Comp-01 --> metadata added

:
:
:
:

Comp-02
Comp-03
:

Figure 8: Tree structure sample

The tree structure of the metadata repository is meaningful to know the system configurations.
The tree structure consists of several entries. In the case of Grid systems, we can see "Grid" entries
and several "component" server entries in each Grid entry. Each component entry has the three
entries: "install", "config", and "reset", which can contain binary applications and scripts to be
used in VM setup for the software bundle function of ICCT. Figure8 shows an example of the tree
structure in the metadata repository.

OVF is designed as a packaging standard to enable the portability and deployment of virtual
appliances [2]. OVF is a text file and written in XML. OVA is a tar archive file including OVF
file and other resource files. The metadata repository should contain modifiable properties of OVF
in the component entry in the tree structure. The OVA location expressed in URL should be also
registered as metadata. Table 1 shows the metadata example.

6. Implementation

This section describes our system environments and development tools.

7

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

Metadata Key Value
ova_url http://sg20.cc.kek.jp:8080/static/ecc064ca-ae52-4ffc-b451-01099fa20a28_sg12_

image.ova

hostname sg12

ip_addr 10.91.14.12

netmask 255.255.255.0

gateway 10.91.14.1

domainname cc.kek.jp

search cc.kek.jp

Table 1: Metadata example.

System Diagram
▸ iRODS and ICCT servers can be located

out side of Cloud.

Mar 27, 2014 Yutaka Kawai, KEK/CRC - ISGC2014 @ Taipei 24

Comp-A
Comp-B

Comp-C

Grid System

ICCT

Commands iRODS

Web Portal

Cloud Provider

Download

Figure 9: System diagram of the implementation.

6.1 System environment

All of the servers and clients are running on CentOS 6.5, 64bit. Linux KVM hypervisor
host is used as a cloud provider host. iRODS 3.3.1 server is used as a metadata repository server
and an iRODS client is installed on the client site. The client site has Python 2.6.6 environment
with PyRods [14] and Minidom [15]. PyRods is a Python client API that is a direct wrapping of
the iRODS C API [14]. Minidom is a minimal implementation of the Document Object Model
interface that enables simpler than full DOM to use the xml.etree.ElementTree module for their
XML processing [15]. With both Python modules, we can easily read and modify OVF file stored
in iRODS server.

6.2 System diagram

Figure 9 shows a system diagram of our implementation. The iRODS server which works as
a metadata repository and ICCT servers can be located outside of Cloud. Users can access iRODS
server with CLI commands, "i-commands [16]" and we can also access ICCT Web portal to create
OVA files.

6.3 Samples

We use iRODS as the metadata repository. Several i-commands: "imkdir", "imeta", or "iput"

8

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

$ ils
/tempZone/home/rods:

C− /tempZone/home/rods/grid01
C− /tempZone/home/rods/grid02
C− /tempZone/home/rods/grid03

Figure 10: iRODS i-command "ils" shows Grid system list.

$ ils grid01
/tempZone/home/rods/grid01:

C− /tempZone/home/rods/grid01/comp01
C− /tempZone/home/rods/grid01/comp02
C− /tempZone/home/rods/grid01/comp03

Figure 11: iRODS i-command "ils" shows component list of one Grid system.

$ ils grid01/comp01
/tempZone/home/rods/grid01/comp01:

C− /tempZone/home/rods/grid01/comp01/config
C− /tempZone/home/rods/grid01/comp01/install
C− /tempZone/home/rods/grid01/comp01/reset

Figure 12: iRODS i-command "ils" shows task entries of one component.

etc. can register the modifiable properties in a tree structure. Figure 10 shows the Grid system list
by using "ils" i-command. Figure 11 and Figure 12 also show component list of the selected Grid
system and tasks of each component respectively.

The registered metadata in iRODS can be shown by "imeta" i-command(Figure 13). iRODS
can contain the metadata as a key-value format. Figure 14 shows a sample XML context which
is a part of an OVF file. We can search the value of an "ovf:key" as an attribute name, and then
modify the value of its "ovf:value". For example, ovf:value of the ovf:key="hostname" is specified
as "myhost" in the default OVF file created by ICCT. We can change the ovf:value to our desirable
value like "sg12" shown in Figure 14.

6.4 Development Tool

We developed a Python application which executes the following steps:

1. Access iRODS server

2. Read the metadata of each component from the metadata repository

3. Download all component OVA files

4. Untar the OVA files

9

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

$ imeta ls −C grid01/comp01
AVUs defined for collection grid01/comp01:
attribute: domainname
value: cc.kek.jp
units:
−−−−
attribute: netmask
value: 255.255.255.0
units:
−−−−
attribute: gateway
value: 10.91.14.1
units:
−−−−
attribute: search
value: cc.kek.jp
units:
−−−−
attribute: hostname
value: sg12
units:
−−−−
attribute: ipaddr
value: 10.91.14.12
units:
−−−−
attribute: ova_url
value: http://sg20.cc.kek.jp:8080/static/ecc064ca−ae52−4ffc−b451−01099fa20a28_sg12_image.ova.
units:

Figure 13: iRODS i-command "imeta ls" shows the metadata of one component.

5. Parse OVF files

6. Update OVF properties according to metadata

7. Tar the OVA files

The getMetaTuple function in Figure 15 accesses the iRODS server and creates a tuple con-
taining key-value update properties. The tuple elements should have two values (key and value)
and is then converted to a dictionary. The setOvfDic functions is used to parse the current de-
fault OVF file and update ovf:value data according to the dictionary. Other functions are basically
implemented by using os.system() to invoke operating system commands.

7. Results

Our implementation enables clients to easily download all OVA files with the modifications
according to the metadata repository. The size of each OVA file becomes too large so the client side

10

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

...

<ovf:ProductSection ovf:class="com.ibm.vsae.2_1.system−host">
<ovf:Info>System name and domainname</ovf:Info>
<ovf:Product>activate−system−host</ovf:Product>
<ovf:Version>2.1</ovf:Version>
<ovf:Property ovf:key="hostname" ovf:type="string" ovf:userConfigurable="true" ovf:value="sg12">

<ovf:Description>Hostname</ovf:Description>
<ovf:Label>Hostname</ovf:Label>

</ovf:Property>
<ovf:Property ovf:key="domainname" ovf:type="string" ovf:userConfigurable="true" ovf:value="cc.kek.jp">

<ovf:Description>Domain Name</ovf:Description>
<ovf:Label>Domain Name</ovf:Label>

</ovf:Property>
</ovf:ProductSection>

...

Figure 14: Part of OVF sample

from irods import ∗
from xml.dom.minidom import parseString

def getMetaTuple(myEnv, cmpPath):
conn, errMsg = rcConnect(myEnv.rodsHost, myEnv.rodsPort,

myEnv.rodsUserName, myEnv.rodsZone)
clientLogin(conn)

newTup = getCollUserMetadata(conn, cmpPath)
c = irodsCollection(conn, cmpPath)
conn.disconnect()
return newTup

def setOvfDic(curOvf, newDic):
xdoc = parseString(curOvf)
for item in xdoc.getElementsByTagName("ovf:Property"):

key = item.getAttribute("ovf:key")
if newDic.has_key(key):

item.setAttribute("ovf:value", newDic[key])
return xdoc

Figure 15: Function to parse and set OVF in Python

requires lots of storage to store the OVA files. As part of the future work, the metadata repository
will be able to store an OVA file to avoid storage limitations on the client side if the repository can
accept large size files.

Also, it is enough to copy and modify configurations in the metadata repository for a prepara-

11

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

tion to deploy the images. However, certification, credential issues, and other installation matters
will require some extra work. As future work, the config scripts of the ICCT’s software bundle can
be useful to solve that. The metadata repository can contain binary and script files so we can create
a new OVA file (or appliance) including these files.

Current our implementation requires us to input the metadata repository in iRODS manually.
We need to develop tools or systems to automatically acquire the current Grid configurations, as
future work.

8. Conclusion

In this paper we have described an approach to address the situation where a user has to
manage a lot of software images. So they need an automated management system to deploy and
install the VM images on a cloud. We have implemented half of their necessities that automatically
modify and create OVA files according to the metadata repository. In the case of our system envi-
ronment, ICCT is used as a portal system to capture running VMs and iRODS is used as a metadata
repository.

We found that configuring a metadata repository is enough to modify image files with our
implementation. That implementation is easy for cloud users to handle lots of images. In order
to enhance the usability, we have the following future work: completing the lifecycle by using
a software bundle, development of deployment tools, and tools to automatically acquire system
configuration. This approach can be used for cloud users who need to maintain their old software
and data and also old Grid systems for many years.

9. Acknowledgment

The authors would like to thank members of iRODS operation team at Computing Research
Center in KEK.

References

[1] IBM Redbook. IBM Workload Deployer – Pattern-based Application and Middleware Deployments
in a Private Cloud. Technical report, IBM, 2012.
http://www.redbooks.ibm.com/redbooks/pdfs/sg248011.pdf.

[2] DSP0243. Open Virtualization Format Specification. Technical report, DTMF, 2009. http://www.
dmtf.org/sites/default/files/standards/documents/DSP0243_1.0.0.pdf.

[3] IBM: Virtual Appliance Factory. Online. http://www-304.ibm.com/partnerworld/wps/
servlet/ContentHandler/stg_com_sys_virtual_appliance_factory.

[4] Birgit Pfitzmann and Nikolai Joukov. Migration to Multi-Image Cloud Templates. In Proc. IEEE
International Conference on Services Computing (SCC), Washington DC, US, July 2011.

[5] Tivoli White Paper. Tips and Best Practices for Software Bundle Creation – IBM Image Construction
and Composition Tool. Technical report, IBM, 2011.
https://www.ibm.com/developerworks/community/groups/service/html/

communityview?communityUuid=9e696bfa-94af-4f5a-ab50-c955cca76fd0#

12

P
o
S
(
I
S
G
C
2
0
1
4
)
0
3
0

Managing Cloud Images Yutaka KAWAI

fullpageWidgetId=W3442cdbe8799_4569_a9d1_a6a9e5771c67&file=

d4e0d3c0-252a-4a6e-92d1-e0765c3764bd.

[6] OpenStack Open Source Cloud Computing Software. Online. http://www.openstack.org/.

[7] OpenStack: Manage images. Online.
http://docs.openstack.org/user-guide/content/cli_manage_images.html.

[8] EMI: European Middleware Initiativ. Online. http://www.eu-emi.eu/.

[9] gLite: Lightweight Middleware for Grid Computing. Online.
http://glite.web.cern.ch/glite/.

[10] Kathryn Cassidy. European Middleware Initiative (EMI) - gLite. Technical report, TCD, 2010.
https://twiki.cern.ch/twiki/pub/EMI/EmiNa2T3InreachSessions/EMI_

inreach-gLite.ppt.

[11] iRODS – the Integrated Rule-Oriented Data System. Online. http://irods.org.

[12] KEK: High Energy Accelerator Research Organization. Online.
http://www.kek.jp/intra-e/.

[13] Eng/iRODS System at KEK. Online.
http://kekcc.kek.jp/service/kekcc/html/Eng/iRODS20System.html.

[14] Pyrods description. Online. http://code.google.com/p/irodspython/wiki/PyRods.

[15] Python: xml.dom.minidom – Minimal DOM implementation. Online.
https://docs.python.org/2/library/xml.dom.minidom.html.

[16] iRODS – icommands. Online. https://wiki.irods.org/index.php/icommands.

13

