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The modification of vector mesons at finite density is studied by using QCD sum rules in com-

bination with the maximum entropy method. As a result, it is found that theρ andω receive a

negative mass shift of about 100 MeV at nuclear matter density, which is consistent with previous

studies. This finding however strongly depends of the factorization assumption of the four-quark

condensate, which might not be quantitatively reliable. On the other hand, we find that the mass

shift of theφ is smaller, but much less dependent on the four quark condensate. Instead, our

results show that theφ mass shift is strongly correlated to the strangeness content of the nucleon,

which governs the depletion of the strange quark condensate in nuclear matter.
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1. Introduction

Light vector mesons at finite density have been studied already for quite a long time. They
are interesting especially because the vector mesons have the potential to carry information on the
partial restoration of chiral symmetry in nuclear matter, which could be measured in experiments
[1, 2]. Early works studying QCD sum rules for the vector channels at finite density [1, 3] therefore
provided strong incentives for later experiments.

Matters have however turned out to be a bit more complicated than they were thought to be.
Even though QCD sum rules indeed provide some relation between the spectral function of the
various vector channels and the order parameters of chiral symmetry, this relation is not a direct
one for theρ andω as the driving term for the modification of the spectrum entering into the sum
rules contains not the most simple two-quark condensate but the less known four-quark condensate.
Furthermore, the change of the spectral function should not be considered to be a simple mass shift
of the ground state peak, but rather a combination of mass shift and some sort of broadening for
which the sum rules give only a weak constraint [4]. For theφ , these issues are less severe because
the sum rule input depends much less on the four-quark condensate and its broadening at nuclear
matter density has been estimated to be well below 100 MeV [5].

In our work to be summarized in these proceedings, we analyze the vector meson sum rules
in vacuum and at finite density in a more general way than it was done before, namely with the
help of a recently developed approach which makes use of the maximum entropy method (MEM)
[6]. This method makes it possible to obtain the most likely spectral function directly from the
operator product expansion (OPE), without having to make strong assumptions on its functional
form. It is particularly useful for studying the modification of spectral functions at finite density,
as the framework used to study the vacuum spectral function can be applied analogously to the
nuclear matter case.

This article is organized as follows. In section2.1, we will first briefly recapitulate the basics
of QCD sum rules and its application to finite density. Next, the OPE of the various channels will
be discussed in section2.2 and the corresponding analysis results presented in section3. Finally,
the conclusions are given in section4.

2. Formalism

2.1 Basics of QCD sum rules

As it is common when working with QCD sum rules, we start with the two-point function of
an interpolating field coupling strongly to the hadron of interest:

Πµν(ω, q⃗) = i
∫

d4eiqx⟨T[ jµ(x) jν(0)]⟩ρ . (2.1)

The operatorjµ here stands for12
(
uγµu∓dγµd

)
, in which the negative (positive) sign is used for

theρ (ω) and forsγµs for theφ . ⟨⟩ρ represents the expectation value with respect to the ground
state of nuclear matter.
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We will in the following only consider mesons at rest relative to the nuclear medium (q⃗= 0)
and therefore only need to study the contracted correlator defined as

Π(ω2) =− 1
3ω2 Πµ

µ(ω, q⃗= 0). (2.2)

From the analytic properties ofΠ(ω2), one can then derive the following dispersion relation

Π(ω2) =
1
π

∫ ∞

0
ds

ImΠ(s)
s−ω2− iε

. (2.3)

As a next step, one takesω2 as a large and negative number and calculates the left-hand side of
Eq.(2.3) using the OPE. This gives a power series in1/ω2 with the Wilson-coefficients expressed
as expansions in the strong coupling constantαs. On the right hand side, the function1π ImΠ(s) is
considered in terms of hadronic degrees of freedom and hence contains information on the phyiscal
states coupling tojµ(x).

As a last step, the Borel transform, which cancels any subtraction constants, renders the inte-
gral overs convergent and furthermore improves the convergence of the OPE, is applied, giving

Π̃(M2) =
2

M2

∫ ∞

0
dωωe−ω2/M2

ρ(ω), (2.4)

where the spectral functionρ(ω) has been defined asρ(ω) = 1
π ImΠ(ω2). This is the form of the

sum rule that will be employed presented in these proceedings. For its analysis, we will use MEM,
by which we can extract the most probable form ofρ(ω) directly fromΠ̃(M2). The details of this
analysis method can be found for instance in [6, 7, 8, 9].

2.2 The OPE of the vector channels in the linear density approximation

The OPE can generally be given as shown below:

ΠOPE(M
2,ρ) = c0(ρ)+

c1(ρ)
M2 +

c2(ρ)
M4 +

c3(ρ)
M6 + . . . . (2.5)

Here, we consider terms up to dimension 6 and hence neglect all terms not explicitly shown above.
The coefficientsci(ρ) contain dimensionless functions and condensates of mass dimension2i.

In vacuum (ρ = 0), theci(0)’s have been obtained as [10]

c0(0) =
1

4π2

(
1+

αs

π

)
, c2(0) =

1
12

⟨αs

π
G2

⟩
+2mq⟨q̄q⟩, (2.6)

c1(0) =−
3m2

q

2π2 , c3(0) =− 112
81

παsκ⟨q̄q⟩2, (2.7)

for theρ andω mesons. In the above expressions, quantities labeled asq are averaged over theu
andd quarks. Within our approximations, bothρ andω give the same OPE. We will therefore from
now on only refer to theρ, the same results also being applicable to theω meson. The OPE for the
φ meson can be similarly obtained by exchangingmq with ms, ⟨q̄q⟩ with ⟨s̄s⟩ and the factor112

81 at
dimension 6 with80

81. The main difference between the two cases arises from the term proportional
to the quark masses at dimension 2 and 4. For theρ, these terms are essentially negligible, while
they have important effects in theφ meson case.
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Figure 1: Theρ (left plot) andφ (right plot) meson masses as a function of density. The masses are given
relative to their vacuum values, while the density is given in units of the nuclear matter densityρ0.

Next, let us proceed to the OPE at finite density. Within the linear density approximation, the
coefficientsci(ρ) can be given as [1]

c0(ρ) =c0(0), c2(ρ) =c2(0)+ρ

[
− 2

27
M0

N +2mq⟨N|q̄q|N⟩+ 1
2

Au+d
1 MN

]
, (2.8)

c1(ρ) =c1(0), c3(ρ) =c3(0)+ρ

[
−224

81
παsκ⟨q̄q⟩⟨N|q̄q|N⟩.− 5

12
Au+d

3 M3
N

]
, (2.9)

for theρ meson case, while for theφ we get

c0(ρ) =c0(0), c2(ρ) =c2(0)+ρ

[
− 2

27
M0

N +2ms⟨N|s̄s|N⟩+As
1MN

]
, (2.10)

c1(ρ) =c1(0), c3(ρ) =c3(0)+ρ

[
−160

81
παsκ⟨s̄s⟩⟨N|s̄s|N⟩.− 5

6
As

3M3
N

]
. (2.11)

Here,MN is the nucleon mass andM0
N its value at the chiral limit. Furthermore, the variablesAu+d

1 ,
Au+d

3 , As
1 andAs

3 are moments over the parton distributions of theu+d ands quarks, respectively.

3. Results

Let us discuss our obtained results on the behavior of the various vector mesons at finite den-
sity. Due to limitation of space, we here will only show our findings on the meson mass shifts.
Detailed discussions taking into account the effects of broadening and and other systematic uncer-
tainties will be given elsewhere [11].

Firstly, theρ-mass is shown as a function of density on the left side of Fig.1. As can be
observed in this figure, theρ meson experiences a negative mass shift, which takes a value of about
100 MeV at nuclear matter density, the detailed number depending somewhat on the used value
of the πN sigma term:σπN = 2mq⟨N|q̄q|N⟩. This result is essentially in agreement with earlier
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works [1]. We should however add here some comment of caution, as the vacuum saturation
approximation used in Eqs. (2.7) and (2.9), might be strongly violated, especially when going to
finite density. As the four-quark condensate term in mainly responsible for the OPE modification
at finite density, this approximation introduces large uncertainties into our results for theρ meson.

For theφ meson, the situation is much better because in the OPE of this channel, it is mainly
the dimension 4 terms, which determine the change of the OPE at finite density. The most important
unknown quantity of this sum rule is in fact the strange sigma termσsN = ms⟨N|s̄s|N⟩, which is
illustrated on the right side of Fig.1, where theφ meson mass is shown as a function of density
for two typical values ofσsN, which have been obtained by two recent lattice QCD calculations
[12, 13]. It should also be noted, that the mass shifts that we have obtained here are much smaller
than the ones extracted in earlier works [1], one of them even having a different sign. The reason
for this discrepancy lies in the recent values ofσsN, which are up to a factor of five smaller than the
estimates used in [1].

4. Conclusions

We have studied the behavior of vector mesons at finite density using QCD sum rules and
MEM. As a result, we have found a negative mass shift of about 100 MeV for theρ andω mesons
at nuclear matter density, which agrees with earlier estimates. This result involves, however large
uncertainties due to our lack of knowledge on the behavior of the four-quark condensates at finite
density.

For theφ meson, we have found a strong dependence of the finite density mass shift on the
strange sigma term, which in the future might make it possible to constrain this quantity by experi-
mentally measuring theφ meson mass shift. The details of this last point will be discussed in detail
in a forthcoming publication [11].
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