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We computed correlators of vector, axial and pseudoscalar currents in the external strong magnetic

field according to SU(2) lattice gauge theory. Masses of the neutralρ andA mesons with different

spin projectionss= 0,±1 along the magnetic field direction have been calculated. The masses of

the neutral axial and vector mesons with zero spins= 0 decrease under the increasing magnetic

field, while the masses with spins= ±1 increase with the value of the field. The quark mass

extrapolation also were performed on the lattice.
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1. Introduction

In physics of strong interactions many interesting effectsare caused by strong magnetic fields.
It is expected that the magnetic fields∼ 2 GeV existed in the Early Universe during the electroweak
phase transition [1]. In non-central heavy-ion collisionsthe value of magnetic field can reach
15m2

π ∼ 0.29 (GeV)2 [2]. Phenomenological models show that the critical temperature of the
transitionTc between the phases of confinement and deconfinement varies with a raising of the
external magnetic fieldB, and the phase transition becomes of the first order [3]. An increase of the
phase transition temperatureTc is predicted in Nambu-Jona-Lasinio models: NJL, EPNJL, PNJL
[4] and PNJL8 [5], the Gross-Neveu model [6, 7]. Calculations on the lattice withNf = 2 flavours
[8] and Nf = 2+ 1 flavours revealed the increase of the transition temperature Tc with raising of
the magnetic field [9]. The chiral perturbation theory also predicts the decrease of the transition
temperature with the magnetic field value [10]. It has been shown in the framework of the Nambu-
Jona-Lasinio model that in the presence of sufficiently strong magnetic fields (Bc = m2

ρ/e≃ 1016

T) QCD vacuum becomes a superconductor [11] along the direction of the magnetic field. The
transition to the superconducting phase is accompanied by acondensation of chargedρ mesons.
Calculations on the lattice [12] also indicate the existence of the superconducting phase. We have
investigated the behavior of the neutralρ meson masses with different spin projections= 0 and
s=±1 to the field direction. It can be an evidence of the presence of the superfluidity phase. In [13]
the mass of the neutral vectorρ meson was calculated in the relativistic quark- antiquark model,
the mass of neutralρ meson with zero spin does not vanishes with the growth of the magnetic field
in the confinement phase in contradiction with the results presented in [11].

2. Details of the calculations

For generation ofSU(2) gauge field configurations we use the tadpole improved Symanzik
action [14]. The calculations were performed on symmetric lattices with various lattice volumes
144, 164, 184 and lattice spacingsa= 0.0681, 0.0998 and 0.138348 fm. A fermionic spectrum in
the background ofSU(2) gauge fields were calculated due to Neuberger overlap operator which is
chiral invariant Neuberger [15]. We compute the eigenfunction ψk and eigenvaluesλk for a test
quark in a gauge field configurationsAµ on the lattice in Euclidean space.Aµ is a sum ofSU(2)
gauge fields and the externalU(1) uniform magnetic field. From the eigenfunctions of the Dirac
operator we construct the propagators and correlators. Thevalue of the magnetic field on the lattice
is quantized and equal toqB= 2πk/(aL)2, k ∈ Z, whereq= −1/3e is the charge of ad-quark,
we consider one flavour in our theory. The quantization condition imposes a limit on the minimum
value of the magnetic field. For our calculations it equals 0.386 GeV2 for the lattice volume 164

and lattice spacing 0.1383 fm. We use statistical independent configurations of the gluon field for
each value of the quark mass in the intervalmqa= 0.01−0.8.

3. Calculation of observables

We calculate the observables

〈ψ†(x)O1ψ(x)ψ†(y)O2ψ(y)〉A (3.1)
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whereO1,O2 = γ5,γµ ,ν are Dirac gamma matrices,µ ,ν = 1, ..,4. In the Euclidean spaceψ† = ψ̄
[16]. The correlators (3.1) are defined by Dirac propagators1/(D+m) . In our work we used the
M = 50 lowest eigenstates. On the lattice in the background of a gauge fieldAµ the observables
(3.1) (for the M lowest eigenstates) have the form

〈ψ̄O1ψψ̄O2ψ〉A = ∑
k,p<M

〈k|O1|k〉〈p|O2|p〉− 〈p|O1|k〉〈k|O2|p〉
(iλk+m)(iλp+m)

(3.2)

The first term in the numerator of (3.2) represents a disconnected part and the second one with a
minus sign - a connected part. We checked the first term is zerowithin the errors and does not
affect the masses, so we use only the connected part of the correlators.

The mass of the neutralρ meson was obtained from the correlator of vector currents〈 jVµ (x) jVν (y)〉A,
where jVµ (x) = ψ†(x)γµ ψ(x). The correlator〈 jPS(x) jPS(y)〉A enables us to compute the mass ofπ
meson, wherejPS= ψ†(x)γ5ψ(x) is the pseudoscalar current.

For the calculation of meson masses we use spectral expansion of the lattice correlation func-
tion

C(nt) =∑
k

〈0|O1|k〉〈k|O
†
2|0〉e

−nt aEk = A0e−ntaE0 +A1e
−ntaE1 + ..., (3.3)

whereA0, A1 are some constants,E0 is the energy of the lowest state. For a particle with average
momentum equal to zero~p = 0 its energy equals its massE0 = m0, E1 is the energy of the first
excited state,nt is the number of a lattice site in the line of time direction. From expansion (3.3)
one can see that for large valuesnt the main contribution comes from the ground energy state.

Due to the periodic boundary conditions the contribution ofthe ground state into meson prop-
agator has the form

f (nt) = A0e−nt aE0 +A0e
−(NT−nt)aE0 = 2A0e−NT aE0/2cosh((NT −nt)aE0) (3.4)

The value of the ground state mass can be obtained by fitting the function (3.4) to the lattice
correlator (3.2). The second method which we use is the Maximal Entropy Method (MEM) [17].
Euclidean correlator of the imaginary timeG(τ ,~p) =

∫
d3x〈O(τ ,~x)O†(0,~0)〉e−i~p~x is connected to

the spectral functionρ(ω ,~p) as follows:

G(τ ,~p) =
∫ ∞

0

dω
2π

K(τ ,ω)ρ(ω ,~p), K(τ ,ω) =
cosh[ω(τ −1/2T)]

sinh(ω/2T)
, (3.5)

whereT is the temperature,τ is the Euclidean time,ω is the frequency. The position of the first
peak in spectral functionρ(ω ,~p) corresponds to the energy of the ground state. We presume
〈~p〉 = 0 and do not consider any function from it. The detail of the calculations according with
MEM are presented in our previous work [18].

4. Results

At first we calculate the mass of the neutralπ meson on the lattice from the correlators of
the pseudoscalar currentsCPSPS(nt) = 〈 jPS(~0,nt) jPS(~0,0)〉A, wherejPS(~0,nt) = ψ̄(~0,nt)γ5ψ(~0,nt).
We found that the squared pion mass is the linear function of the quark mass, this agrees with the
predictions of ChPT. In Fig.1 (left) we show theπ meson mass versus the value of the squared
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Figure 1: The mass of the neutralπ meson obtained via theCPSPS(nt) versus the squared value of the
magnetic field for renormalized and nonrenormalized quark masses (left). Dependence of the mass of the
neutral vectorρ meson with zero spins= 0 on the value of external magnetic field for the lattice volumes
144, 164, 184 and lattice spacingsa= 0.0998 fm, 0.1338 fm calculated in accordance with the MEM.

magnetic field. For the renormalized pion mass we get the linear mass dependence from the mag-
netic field, the slope is negative in accordance with the results of A.Smilga obtained with the Chiral
Perturbation Theory [19].

The external magnetic field is directed along the third coordinate axis. We calculate the meson
masses with zero spin from the expression (3.2) withO1,O2 = γ3. Fig.1 (right) shows the mass of
the neutral vector meson with zero spin obtained by the Maximal Entropy Method at various lattice
volumes, spacings and bare quark masses. The mass decreasesunder the increasing magnetic field
for all the sets of data.

The masses of the vector meson were calculated for various values of the magnetic field.
We extrapolate theρ meson mass to the quark massmq0 giving the mass of neutral pion equal
to 135 Mev. For this purpose we calculate theρ mass for several values ofmq in the interval
mq = 0.01÷0.8, perform fitting and find the coefficientsai andbi in the equations

mρ = a0+a1mq, mA = b0+b1mq (4.1)

and then extrapolatemρ(mq) to the physical valuesmρ(mq0) at mq = mq0 using (4.1).
In Fig.2 (left) we depict the mass of the neutralρ meson with zero spin. The mass decreases

under increasing magnetic field for all the lattice volumes and spacings. For the purposes of visu-
alization we connected the points by splines. Fig.2 (right)shows the mass of theρ meson mass
with nonzero spin versus the field value. The masses with spins=±1 increase with the field. The
results were obtained after the quark mass extrapolation. Fig. 3 (left) shows the behaviour of the
neutral axial meson mass with zero spin versus the external magnetic obtained from the Maximal
Entropy Method. In Fig. 3 (right) we see the mass of the neutral axial meson with various spin
projections along the field direction. The mass ofA with zero spin decreases, while the masses
with s=±1 increase slowly.

Unfortunately on the lattice in the presence of the magneticfield the quantum numbers of
mesons are not precise. The mixing takes place due to the interaction between photons and vector
(axial) quark currents and can occur between neutral pion and neutralρ or A meson with zero spin.
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Figure 2: Dependence of the mass of the neutral vectorρ meson with spins= 0 on the value of the external
magnetic field for the lattice volumes 164, 184 and lattice spacingsa= 0.0998, 0.1155 fm (left). The mass
of the neutral vectorρ meson with spins= ±1 versus the field value for the lattice volumes 164, 184 and
lattice spacingsa= 0.0998, 0.1155 fm (right). The results were obtained after quark mass extrapolation by
coshinus function fit.
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Figure 3: The mass of the neutral axialA meson with zero spins= 0 versus the value of external magnetic
field for the lattice volumes 144 and 164 and lattice spacingsa= 0.0998 fm, 0.1338 fm in accordance with
the Maximal Entropy Method (left). The mass of the neutral axial A meson with various spins versus the
value of the magnetic field for the lattice volume 184 and lattice spacinga= 0.1155 fm (right).

No severe methods occurs to disentangle these two states in the magnetic field. However we have
strong indications that the masses of vector and axial mesons withs=±1 increase inSU(2) theory.

5. Conclusions

In this work we explore the masses of neutralπ, ρ andA mesons in the background of the
strong magnetic field of hadronic scale in the confinement phase. The masses with zero spin pro-
jection to the magnetic field differ from the masses with spinprojections=±1. The masses with
s= 0 decrease with the magnetic field, while the masses withs= ±1 increase with the field. We
consider this phenomena being the result of an anisotropy created by the strong magnetic field
creates. We do not observe any condensation of neutral mesons, so there are no evidences of super-
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fluidity in the confinement phase. However the presence of superconducting phase at high values
of the magnetic fieldB [20] in QCD is a hot topic for discussions. The condensation of chargedρ
mesons would be an evidence of the existence of the superconductivity in QCD.

The authors are grateful to ITEP supercomputer center (the calculations were performed at
supercomputers "Graphin" and "Stakan"), Moscow Supercomputer JSCC Center.
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