High Energy Astrophysics I. Cosmic Rays & Neutrinos

Péter Mészáros Pennsylvania State University

NIC2014, Debrecen,

What are Cosmic Rays?

• Early 1900s: Electroscopes near radioactive radiation sources **discharge**; at rate which is proportional to the radiation intensity

- However, even *far* from radioactive sources, the electroscope discharges slowly → some *other* source of radiation- but *what?*
- I9I0-I9I3: various experiments try to identify sources. Italian physicist Domenico Pacini → if descend below the sea:
 - → radiation intensity **decreases with depth!**
- Austrian physicist Victor Hess, 1911-13: go up in balloons ≤ 5 km altitude: radiation intensity first decreases for first km, but then increases with altitude ! (..comes from above ?!!)

Where the wild things come from

- Victor Hess at start of one of his ten balloon flights (no oxygen)
- One flight during total solar eclipse: radiation intensity did not change → **not** solar origin. Origin must be **extraterrestrial!**
- Was 29 years old when he did these observations. "A radiation of very high penetrating power enters the atmosphere from above".
- Awarded the Physics Nobel Prize in 1936

Mounting Clues

- A.H. Compton measured cosmic ray rates around the world (1935)
- Lemaitre, Vallarta,
 Johnson, Alvarez:
 incoming CRs follow
 Earth's geomagnetic
 latitude
- East-West asymmetry: the parent cosmic rays must be (positively) charged particles

[CR slides credit: Stephane Coutu]

New discoveries from CR atmospheric showers using new apparatus

- **Positrons** (1932): Anderson -first antimatter
- Gamma-rays (early 30s): Blackett, Occhialini
- Muons (1947-53): Anderson, Neddermeyer, Street, Stevenson (1936-37)
- **Pions** (1947): Occhialini, Powell, Lattes
- Kaons (1947-53), Lambda (1951), Xi (1952), Sigma (1953).....
- → Birth of particle physics !

Further progress

Pierre Auger discovers extensive air showers in 1938

[CR slides (blue bkg.) credit: Stephane Coutu]

Used balloons too (automated)

So far, all particles seen are made in the atmosphere...

Cosmic rays can be extraordinarily energetic > 10^{15} eV (millions of times the energy in the mass of a proton).

high energy particle

number of particles grows up to a maximum

particles are depleted by absorbing material

6

Direct measurements

Starting in late 1940s, unmanned balloons up to 130,000 ft, up to tens of hours; direct measurements of cosmic particles become possible; primary cosmic rays are 85% protons (1940s); there are nuclei too, 12% helium, 2% Li-Fe (1948-50); there are 1% electrons too (1961).

Ballooning in the news

Stratolab 5, May 4, 1961 114 kft (Malcolm Ross ok, Vic Prather drowned); next day: Alan Shepard on Mercury Freedom 7

Nuclear Compton Telescope NCT, Alice Springs, Apr 29, 2010 : *the dangers of science*

Direct measurements

Since 1987: launches from McMurdo, Antarctica; flights up to 42 days! NASA/Columbia Scientific Balloon Facility (CSBF)

Getting to Antarctica

Sida

* McMurdo

CREAM (Cosmic Ray Energetics And Mass)

Since the 1960s, ever larger, more complex instruments flown on large balloons for longer durations;

> e.g.: CREAM: 2004-present, 6 Antarctic flights, 160 days of exposure, flight 7 in Dec 2013.

SCD

C-Targets

CAL

Mass 1,300 kg, Power 400 W

Measure elemental energy distributions from H to Fe, from 100 GeV to ~200 TeV/nucleus (100 to 200,000 times the energyin a proton mass).

Elemental abundances

Energy 1 GeV/n to 4 TeV/n, unmatched charge resolution (~0.2e) in this energy regime.

Ahn H.S. et al., ApJ 714, L89 (2010)

C primary, but B arises from spallation in interstellar collisions...

B/C tells the history of propagation (over 7-8 million years).

What accelerates CRs to these high energies?

1940s : E_{CR}~Pev (10¹⁵ eV)

What accelerates CRs to these high energies?

1940s : E_{CR}~Pev (10¹⁵ eV)

Enrico Fermi

Initially proposed scattering of CRs, bouncing off the magnetic field of interstellar clouds, (Fermi's *2nd order* mechanism), effic. $\Delta E/E \sim (V/c)^2$ /scatt.

What accelerates CRs to these high energies?

1940s : E_{CR}~Pev (10¹⁵ eV)

Enrico Fermi

Initially proposed scattering of CRs, bouncing off the magnetic field of interstellar clouds, (Fermi's *2nd order* mechanism), $\Delta E/E \sim (V/c)^2$ /scatt.

What accelerates CRs to these high energies?

1940s : E_{CR}~Pev (10¹⁵ eV)

Enrico Fermi

Initially proposed scattering of CRs, bouncing off the magnetic field of interstellar clouds, (Fermi's *2nd order* mechanism), $\Delta E/E \sim (V/c)^2$ /scatt.

BUT: mechanism not very efficient

Space measurements

Also can fly instruments on rockets and satellites

e.g.: 1979: HEAO-3 Atlas-Centaur rocket; 1985: CRN Space Shuttle Challenger; 1997: ACE Delta II rocket; 2011: AMS International Space Station.

Long exposures (years), no residual atmospheric overburden, true vacuum, power from solar panels; but takes years (decades?) of development, testing, qualification, and can be very expensive (e.g., AMS cost is estimated at \$2B - \$4B)...

New development: build a scaled-down version of CREAM to go to the ISS
 ISS-CREAM !
 optimized for cosmic-ray nuclei, but also sensitive to electrons;
 long exposure in space will more than compensate for smaller size;
 in various stages of design, fabrication, qualification, commissioning;
 planned launch on SpaceX 5, 2014.

p? Fe? > 200 TeV

Indirect measurements

Beyond ~10¹⁴ eV, particles become too rarefor direct detection; can only be studied through their atmospheric secondaries.

e.g. in the Appenine mountains, Italy:

Gran Sasso Lab, near L'Aquila

CR air shower

- **Primary** CR (p, He,...heavies) **interact** at top of atmosphere
- Produce **cascade** of **secondary**, lighter particles
- Both *EM* (e^{\pm},γ) and *hadronic* (N, K, π , μ , ν ..) cascades
- *Secondaries* are *detected* in air or at ground level

KASCADE-Grande

KArlsruhe Shower Core Array DEtector - Grande

- *Indirect* detection of primary CRs (10¹⁶-10¹⁸ eV) via *secondaries*
- Monte Carlo
 simulations allow
 determination of
 chemical composition of
 primary CRs
- Beyond 10¹⁵ eV,
 composition
 increasingly
 weighted towards *heavy elements*,
 He, .., C, O, ..Fe

CR spectrum (*a*) $\mathbf{E} < 10^{17} \, \mathrm{eV}$

- Spectrum steepens in a "knee"
- Knee energy depends on *charge* Z
- For *p*, knee @ 10¹⁵ eV
- For *Fe*, knee @ 10¹⁷ eV

 $E_{max} \sim \beta c ZeBL$ 🖌

25

Push to even high energies

At the highest energies, extraordinary efforts are required to measure the air showers with enough statistical precision:
Volcano Ranch 1959-1965, 100 km² yr total; Haverah Park 1963-1987, 300 km² yr total; Yakutsk 1973-2000, 500 km² yr total; Fly's Eye 1987-1995, 900 km² yr total; AGASA 1991-2003, 3,000 km² yr total; HiRes 1998-2006, 8,000 km² yr total; Auger since 2003, 21,000 km² yr so far; TA since 2008, 700 km² ×εT so far.

G. Zatsepin in Russia

J. Linsley at Volcano Ranch

Haverah Park after 20 year

currently, highest energy UHECR observatory with largest daily rate is ...

Pierre Auger Observatory

International consortium, located in Argentina, Mendoza province

Uses two techniques for detecting CR shower:

 detect air fluorescence produced by shower particles (FD)

(EM showers)

•detect shower particles on the surface (SD)

(hadronic showers)

Surface detectors (SD)

Muons from shower \rightarrow Cherenkov light in water tank, detected by phototubes

Pierre Auger Observatory: Malargue, Mendoza, Argentina: $E \sim 10^{17} - 10^{21} eV$ -1600 surface detectors: water Cherenkov tanks, 11 kliters ea., 1.5 km apart -32 air fluoresence telescopes, 4x8 arrays of 30x30 deg. sky coverage 29 -Also: tau-nu (horiz.1 shower capability: Earth-skimming & through Andes)

Size of the Pierre Auger Observatory (vs Budapest)

The Pierre Auger Observatory

(movie credit: Auger collab.)

Jim Cronin Alan Watson

Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 (+3) Telescopes total

Surface Array 1663 detector stations 1.5 km spacing 3000 km²

The cosmic ray spectrum

Cosmic rays:
high energy nuclei from H to Fe;
~<10⁹ eV to >10²⁰ eV;
rates plummet with energy...

11 orders of magnitude in energy;31 orders of magnitude in intensity...

The cosmic ray spectrum

Cosmic rays: high energy nuclei from H to Fe; ~<10⁹ eV to >10²⁰ eV;

rates plummet with energy...

11 orders of magnitude in energy;31 orders of magnitude in intensity...

The cosmic ray spectrum

Cosmic rays: high energy nuclei from H to Fe; $<10^9$ eV to $>10^{20}$ eV; rates plummet with energy... 11 orders of magnitude in energy; 31 orders of magnitude in intensity... Fluxes rescaled by E² The Knee: Limit to supernova acceleration? **Clue:** composition The Ankle: Transition to extragalactic sources? Clue: anisotropies, energy cutoff

Cosmic ray flux and Composition

UHE spectrum

Auger 2011 63,376 SD + 3,660 hybrid events; Exposure = 20,905 km² sr yr $(7 \times AGASA, 2.6 \times HiRes).$

GZK cutoff (or something very like it) definitely seen! Sources must be within ~100 Mpc (300 Mly)... look for anisotropies! ₃₈

How far do they come from?

Cosmic ray astronomy?

0

Aitoff projection

3.1° error circle Field of view ($\theta < 60^\circ$) AGN at z<0.0

2007: Auger found a correlation between the arrival direction of the most energetic events $(> 5.6 \times 10^{19} \text{ eV})$ and known "nearby" AGNs (< 75 Mpc, 250 Mly).

Supergalactic plane

Strongest correlation is in the direction of Centaurus A (13 events within 18°, vs 3.2 expected).

Science

Centaurus A (4.2 Mpc, 14 Mly)

AAAS

AUGER : UHECR spatial correlations with AGNs (or LSS)

- Dashed line: supergalactic equator
- Circles (proton): Events $E > 5x10^{19} \text{ eV}$, D < 75 Mpc
- Asterisks : Veron-Cety catalog AGNs

Science Nov 2007; but - newer: arXiv:1009.1855; also ICRC 11

Auger spatial correlation

- Initially found 3- σ corr. with VC AGNs within $\theta \leq 3.5^{\circ}$ and D< 75 Mpc, for 27 events E>4.5x10¹⁹ eV (Science, 2007)
- The above correlation would suggest protons
- But: there is even better correlation with "average" galaxies
- If heavy: r_L smaller, rms. dev. angle $\theta \sim n^{1/2} \theta_s \sim (r/\lambda_B)^{1/2} (\lambda_B/r_L) \sim (r\lambda_B)^{1/2} / r_L$ is larger, many more gals. inside error circle
- Also: (arXiv:1009.1855, etc.): now (>2011) the VCV-AGN significance has weakened to $\leq 2\sigma$ (see Allard talk)
- Low or no VCVAGN corr.: also from HiRes (Sagawa talk)
 - → Could be sources are in galaxies GRB ? HNs? MGRs? Or in other, less extreme and more common galaxies?
 - \rightarrow Or could be they are heavy nuclei, larger error circle?

Auger : UHECR nuclear composition

GZK energy

- *"GZK"* = Greisen-Zatsepin-Kuzmin (1967)
- "UHECR" = ultra-high energy cosmic ray, roughly 10^{18} - 10^{21} eV = 10^{-2} -10 E_{GZK}
- $E_{GZK} \sim 10^{20} \text{ eV} \equiv 100 \text{ EeV}$ (Exa-electron-Volt) $\approx 1.6 \text{x} 10^8 \text{ erg} \approx 16$ Joule ≈ 4 calories
- $E_{GZK} \approx$ fast-serve *tennis ball* (~130 km/h), or ~ the energy of a small caliber pistol *bullet*
- Significance: $E \ge E_{GZK}$ protons encountering the $\sim 10^{-3}$ eV cosmic microwave (CMB) *photons* undergo catastrophic *photo-hadronic* losses, $p+\gamma \rightarrow \pi+N \rightarrow v, \gamma, e^+$

- Location: Utah 700 km², 500 SD, 3 FD, 1.4 km altitude
- Hybrid designed, based on Akeno SD and HiRes Fly's Eye FD
- In operation: science results compatible $(\pm 1\sigma)$ with Auger

UHECR : maximum energy ?

(Electrical circuit analogy - the real physics boils down to the same)

gyroradius: $r_L \sim ct_{gy} \sim m_p c^2 \gamma / ZeB = \epsilon_p / ZeB < R (size of accel.)$

But if relativistic expansion, bulk Lorentz factor $\Gamma >> 1$, then time_{obs} ~ R/c Γ , and size_{obs} ~ R/ Γ , hence need

$$\Rightarrow L > 2 \frac{\Gamma^2}{\beta} \varepsilon_{p,20}^2 \times 10^{45} \mathrm{erg/s}$$

 \Rightarrow **GRB**, **AGN**..?

(only *the strongest* source types qualify !)

Possible sources of UHECRs (& Neutrinos) extending to **GZK energies**

Astrophysical UHECR Sources ?

AGN

Active Galactic Nucleus

Gamma Ray

Burst

ΗN

Hypernova

MGR Magnetar

Outlook for UHECR

- The sources of the UHECR are still unknown..!
- They are almost certainly astrophysical sources (not TD)
- GRB remain good candidates, as well as AGNs, HNe, RQ, maybe MGRs.
- Will increasingly constrain such possibilities with GeV and TeV photon observations
- Will learn even more if & when astrophysical UHENUs are observed from any type of source
- Constraints from diffuse (and intrasource) γ-ray emission will also be very useful, and may remain for a long time the main constraint
- Composition and clustering will provide important clues

What is the **Relation** between **UHECRs and UHENUs?**

UHECR = Ultra-High Energy Cosmic Rays UHENU = Ultra-High Energy Neutrinos

define HE $\approx 10^9 \text{ eV} (\text{GeV})$ VHE $\approx 10^{12} \text{ eV} (\text{TeV})$ UHE $\approx 10^{18} \text{ eV} (\text{EeV})$

TeV Neutrinos

Observing astrophysical neutrinos allows conclusions about the acceleration mechanism of Cosmic Rays

Neutrinos from cosmic ray interactions in:

- Atmosphere
- Cosmic Microwave Background
- Gamma Ray Bursts (Acceleration Sites)
- Active Galactic Nuclei (Acceleration Sites)

Slides: C. Kopper 14 Moriond

Astro VHE neutrinos

At the simplest level:

- Fermi acceleration: particle power law $dN_{p,e}/dE \sim E^{-q}$
- $e^{\pm}, B \rightarrow \gamma$ (PL γ s, act as targets for the accelerated p)

•
$$p, \gamma \rightarrow \pi^{\pm} \rightarrow \mu^{\pm}, \nu_{\mu} \rightarrow e^{\pm}, \nu_{e}, \nu_{\mu}$$

- For PL $dN_{e,p}/dE$ and $dN_{\gamma}/dE \rightarrow \int dN_{\nu}/dE$ also PL
- Parameters: ε_p , ε_e , ε_B : energy ratios of p,e,B to E_{tot}
- E_{tot}: total burst energy, Γ: bulk Lorentz factor

How can one detect UHENUs?

Concha Gonzalez-Garcia

ν Interactions

Due to SM Weak Interactions

$$\sigma^{
u p} \sim 10^{-38} \mathrm{cm}^2 rac{E_{
u}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's?$

 $\Phi_{
u}^{
m ATM} = 1 \,
u \, {
m per} \, {
m cm}^2 \, {
m per} \, {
m second} \quad {
m and}$

$$\langle E_{
u}
angle = 1 \; {
m GeV}$$

• How many interact? In a human body:

 $N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human} \quad (M \times T \equiv \text{Exposure})$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$
$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$
$$T_{\text{output}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

 $N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1$ interaction per lifetime

 \Rightarrow Need huge detectors with Exposure \sim KTon \times year

(for GeV v's)

(IceCube slides credit: IceCube collaboration)

The IceCube Collaboration

http://icecube.wisc.edu

36 institutions, ~270 members

Canada

University of Alberta

US

Bartol Research Institute. Delaware Pennsylvania State University University of California - Berkeley **University of California - Irvine Clark-Atlanta University University of Maryland** University of Wisconsin - Madison

University of Wisconsin - River Falls Lawrence Berkeley National Lab. University of Kansas Southern University, Baton Rouge University of Alaska, Anchorage University of Alabama, Tuscaloosa **Georgia Tech Ohio State University**

Barbados

University of West Indies

Sweden Uppsala Universitet Stockholms Universitet DESY-Zeuthen

UK **Oxford University** **Universität Mainz Universität Dortmund Universität Wuppertal** Humboldt-Universität zu Berlin **MPI Heidelberg RWTH Aachen** Universität Bonn **Ruhr-Universität Bochum**

Germany

Belaium

Université Libre de Bruxelles Vrije Universiteit Brussel **Universiteit** Gent Université de Mons-Hainaut

Switzerland

EPFL, Lausanne

ANTARCTICA Amundsen-Scott Station

The first results from the full detector! Japan

Chiba University

New Zealand **University of Canterbury** Aya Ishihara

Why The South Pole?

Deep (3km) clear ice
on land (not on water as at north pole)
Excellent infrastructure
new south pole station

No distractions, easy to focus on work No polar bears

Neutrino Telescopes

lceCube

 Neutrinos interact in or near the detector

- O(km) muons from v_{μ} (CC)
- O(10 m) particle cascades from
 ν_e, low energy ν_τ, and NC
 interactions
- Cherenkov radiation detected by optical sensors

Signals and Backgrounds cosmic ray uonw atmospheric astrophysical ouliju9n neutrino +UVu atmospheric $\mu \rightarrow e \nu_{\mu} \nu_{e}$ events per bin [Hz] downgoing atmospheric 10-2 - Data neutrino neutrino 10^{-3} astrophysical -7-Neutrinos 10-4 -7upgoing 10-5 10^{-6} -0.8 -0.6 -0.4 -0.2 0.2 0 -1 $\cos(\theta_{zen}(llh))$

Spiffy animation by T. DeYoung

IceCube sees the same Substance from its control room as its Competitor, **ANTARES**

BUT: View from ANTARES Control Room

"You can't trust water: Even a straight stick turns crooked in it." - W.C. Fields

ANTARES (off the Mediterranean coast of southern France- almost Club Med..) successfully built a working 12-line neutrino telescope . Small (0.15 km³) compared to IceCube, but...

Antares is a prototype for the Next Big EU Nu-detector:

KM3NeT

KM3NeT : 2016

Total volume ~4 km³, **3** Mediterranean sites: France, Italy, Greece

Neutrino Event Signatures

Signatures of signal events

CC Muon Neutrino

 $\nu_\mu + N \to \mu + X$

track (data)

factor of \approx 2 energy resolution < 1° angular resolution at high energies

Neutral Current / Electron Neutrino

 $u_{\rm e} + N \rightarrow {\rm e} + X$ $\nu_{\rm x} + N \rightarrow \nu_{\rm x} + X$

cascade (data)

≈ ±15% deposited energy resolution
 ≈ 10° angular resolution
 (at energies ≥ 100 TeV)

CC Tau Neutrino

 $\nu_\tau + N \to \tau + X$

"double-bang" (≥10PeV) and other signatures (simulation)

(not observed yet)

Flavor composition at source

• Pionic:

 $p, \gamma(p, p) \to \pi^+ \to \mu^+, \nu_\mu \to e^+, \bar{\nu}_\mu, \nu_e \to [1; 2; 0]_{src}$

• Damped muons :

 $\pi^+ \to \mu^+, \nu_\mu \quad (+cooled \ muons) \to [0; 1; 0]_{src}$

• Prompt :

 π^+ (dense : interact before decay) $\rightarrow [1;1;0]_{src}$

• Beta beam :

(neutron decay) $n \to p^+, e^-, \bar{\nu}_e \to [1; 0; 0]_{src_{68}}$

Flavor oscillations in vacuum

Vacuum oscillations: $[i,j,k]_{obs} = P_{osc} \cdot [i,j,k]_{src}$

where "tri-bi-maximal" vac. osc. probability matrix

$$P_{TBM} \simeq \frac{1}{18} \begin{bmatrix} 10 & 4 & 4 \\ 4 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix}$$

Thus, approximate flavor composition observed is:

• Pionic: Beta beam:

 $P_{\text{TBM}}[1,2,0]_{\text{src}} = [1; 1; 1]_{\text{obs}}$ Damped muons: $P_{TBM} [0,1,0]_{src} = [1; 1.8; 1.8]_{obs}$, Prompt (dense): $P_{TBM} [1,1,0]_{src} = [1; 0.6; 0.6]_{obs}$ $P_{\text{TBM}}[1,0,0]_{\text{src}} = [5; 2; 2]_{\text{obs}}$

Flavor flux & flavor ratios

Kashti-Waxman 05, PRL 95, 181101

- For typical $p, \gamma \rightarrow \pi$ process (also p, p):
- $\varepsilon_{0\mu}$ is neutrino energy where μ -cooling sets in
- Flavor ratios above and below ε_{0µ} are ≠
- Diagnostic for p,γ-p,p
- Also ε_{0μ} dep. on B, E_p, etc., diagnostic for phys. conds. in accel. region

Eriday October 0 2000

and finally Science! Iate 2013: ICECUBE announced

The first detection of "certified" astrophysical neutrinos
Non-atmospheric PeV nus: extragalactic CR tracers?

A. Ishihara, K. Mase, Chiba U Phys. Rev. Lett. 111 (2013) 021103

Atmospheric neutrino flux and diffuse limit

high-energy atmospheric
 ν_μ/ν_e-spectrum as seen
 by IC-40 & IC-79/DC

[lceCube'11,'12]

 predicted prompt atmospheric ν-fluxes (charmed meson decay)
 [Enberg et al.'08]

 high-energy starting event (HESE) analysis
 [IceCube Science'13]

More generally:

- Could *pp* sources might explain the *PeV nu* bkg ?
- In a model-indep.
 way, just assuming spectr. E⁻² or E^{-2.2}, the **answer** is **yes**
 - also suggesting a break @ few PeV

Murase, Ahlers, Lacki 2013, PRD, 88:121301

Some specific pp scenarios

Need: enough CR energy budget, pp efficiency

- Radio Galaxies: CRs 10-100 EeV, escape into cluster IGM, where produce pp nus in the LSS
- **IGS** (cluster accretion shocks): CRs @ 100PeV, then pp nu in IGM, & $t_{diff} \rightarrow sp$. break
- SBGs (starburst gals): may expect higher B_{ISM},
 both SNe, HNe → CRs @ 100PeV, → pp nus ✓
- HNe (hypernovae) could be candidates (rate?)

Murase, Ahlers, Lacki 2013, PRD, 88:121301

Could these be GRB, or HNe?

- No "normal" GRB in coincidence with observed PeV events, X, (but they could be `choked' or low γ-luminosity GRBs)
- A small fraction of PeV sources (close to the Galactic Center) might be galactic TeV uni-ID sources which could be hypernovae (HNe); and CR protons of 10-100 PeV, via pp → PeV Vs ✓; BUT: only 1/28 best fit or 3/28 at 90% CL (Fox, Kashiyama & Mészáros, 2013, ApJ, 774:74)
- A plausible guess: the isotropic component may be extragalactic hypernovae (HNe) in ultraluminous IR galaxies (ULIRGs); or starburst galaxies
 (He, et al, 2013, PRD, 87:063011; Murase, et al, 2013, PRD, 88:121301)
- Note: nu-spectrum must steepen above few PeV, since Glashow resonance [barnue, e⁻ → (W)hadrons] @ 6.3 PeV is not seen
 → corresponding CR spectral slope does not extend to GZK energies ⇒ the PeV and GZK CR sources may be different?

Going above and beyond ...

Potential of Cosmogenic Vs for CR Composition

- If CRs have large fraction of heavies, depending on source distance, photodissociation opt. depth could be <1 → only some of them break up into p,n
- Implies smaller fraction contributes to π⁺ and cosmogenic V production (Anchordoqui et al 06)
- Cosmogenic v flux vs. CR flux may help resolve discrepancy between Auger X_{max} data and apparent correlation with AGN suggesting protons

ANtarctic Impulsive Transient Antenna

- Launched & flown 30 days in early 07 - results being₄analyzed

ANITA GZK limits

Barwick et al, PRL 96:171101

86

Introducing the Askaryan Radio Array (ARA)

Detect radio emission from neutrino induced particle cascades in Antarctic ice

Achieve O(10km³) detection volume per station using array of antenna clusters

Use timing and polarisation information fo neutrino reconstruction

 100 Gton detector, next to IceCube, sensitive up to 10²¹ eV₈₇ (under construction)

ARA

Askaryan Radio Array

- 100 km² array @ South Pole,
- Next to Icecube
- Detect GZK nus ($<10^{21} \text{ eV}$)
- 37 stations, 3 deployed, 13 under construction (funded) by 2016

JEM EUSO

- ISS project, orig. ESA/NASA/RSA/JAXA; precursor for OWL (free-flyer)
- $5.10^{19} 10^{21} \text{ eV}$ EECRs, EENUs
- Monocular 2.5m Fresnel lens, measure EAS via atmos. fluor. emiss
- Thresh: 3.10¹⁹ eV; Effic. @ 10²⁰ eV : 300-1000 event/yr
- Current plan: JEM/JAXA on ISS, 2017

Outlook

- The sources of UHECR (and of UHENU) are still unknown
- Will learn much about best candidates (GRB, AGN, MGR) from GeV and TeV photon observations; many with good photon statistics
- Will constrain particle acceleration / shock parameters, compactness of emission region (dimension, mag.field,.)
- UHECR : chemical composition, angular correl.: sources?
- UHE v will allow test of proton content of jets, proton injection fraction, test shock acceleration physics, magn. field
- If UHE v NOT detected in GRB, AGN → jets are Poynting dominated!
- **Probe v interactions at ~ TeV CM energies**
- Constraints on stellar birth & death rates @ high-z, first structures?
- Cosmogenic nus: probe CR origins, sources

Outlook: UHECR/UHENU

- The sources of the UHECR are still unknown..!
- They are almost certainly astrophysical sources (not TD)
- GRB are good candidates, as well as AGNs, HNe, ...
- Will increasingly constrain such possibilities with GeV and TeV photon observations
- Will learn even more if & when astrophysical UHENUs are observed from any type of identifiable source
- PeV & sub-PeV neutrinos of astrophysical origin have been (almost certainly) detected
- Current challenge: identify sources of PeV/sub-Pev nus
- Multi-messenger observations, CR composition, clustering will provide important clues

High Energy Astrophysics Cosmic Sources of CRs, vs, ys **& Diffuse Radiation**

Péter Mészáros Pennsylvania State University

NIC2014, Debrecen,

Who? What?

(extragalactic)

- AGNs
- GRBs, HNe
- SFGs, SBGs (star-forming or starburst gals)
- GMSs, GSs (galactic merger or gal. shocks)
- \Rightarrow IGB, INB, ICRB (intergalact. γ , CR, ν bkg)

[Other (mainly galactic): SNe, HNe, PWNe, Binaries]

Photons are the most common and useful cosmic messengers (by far - in number, information content, etc)- so, start with

Extragalactic gamma-ray sources

The extragalactic TeV sky is dominated by blazars (mainly BL Lacs)

AGN as UHE γ sources

- Massive BH (10⁷-10⁸ M_{sun}) fed by accretion disk \rightarrow jet
- Lorentz factor $\Gamma_{j,agn} \sim 10-30$
- UV target photons from (1) accr. disk, (2) BLR line clouds
- Typical ("leptonic") model: e[±] accel. in jet shocks, and SSC (sync-self-compton);
 - SEC(sync-exter.compton)
- Typical hadronic model: p accel, in jet shocks, pγ photomeson interactions, → EM cascades

AGN Jet lepto-model

Sikora et al

MRK 421

Ghisellini et al, Spada et al, leptonic IS model, 2004

- Two Lepto-Hadronic models: LHpi (γ from pi-decay) and LHsy (γ from p-sync.)
- Use kinetic eqs. for primaries & decay products, full SOPHIA code for p,γ
- Fit requires very flat $\Gamma_{\rm p}$, $\Gamma_{\rm e} \sim 1.2$, 1.5 (e.g.Niemec-Ostrowski)

FSRQ 3C273

Boettcher, Reimer, Sweeney, Prakash '14, apj 768:54

- Compare **two** models :
- (I) *leptonic* SSC, EC
- (2) *lepto-hadronic* w. semi-analyt. cascades)
- Photon targets from accr. disk, BLR clouds
- Fit 6 FSRQ, 4 LBL, 2 IBL

GRB: basic numbers

- Rate: ~ 1/day inside a Hubble radius
- Distance: $0.1 \le z \le 9.3! \rightarrow D \sim 10^{28}$ cm
- Fluence: $\sim 10^{-4} 10^{-7} \text{ erg/cm}^2$ $F = \int flux.dt \sim 1 \text{ ph/cm}^2 (\gamma \text{-rays !})$
- Energy output: $10^{53} (\Omega/4\pi) D^2_{28.5} F_{-5} erg$ but, jet: $(\Omega_j/4\pi) \sim 10^{-2} \rightarrow E_{\gamma,tot} \sim 10^{51} erg$ $\rightarrow E_{\gamma,tot} \sim L_{\Theta} in 10^{10} year \sim L_{gal} in 1 year$
- Rate[GRB (γ -obs)] ~10⁻⁶(2 π / Ω) /yr/gal \rightarrow 1/day (z ≤ 3)

but Rate [GRB (uncollimated)] ~ 10^{-4} /yr/gal, while Rate [SN (core collapse] ~ 10^{-2} /yr/gal, or 10^{7} /yr ~ 1/s (z <3)

GRBs in Cosmological Context

Explosion => FIREBALL

•
$$E_{\gamma} \sim 10^{51} \ \Omega_{-2} \ D^2_{28.5} \ F_{-5} \ erg$$

• $R_0 \sim c t_0 \sim 10^7 t_{-3} cm$

Huge energy in very small volume

• $\tau_{\gamma\gamma} \sim (E_{\gamma}/R_0^3 m_e c^2) \sigma_T R_0 >> 1$

 \rightarrow Fireball: e^{\pm} , γ , p relativistic gas

• $L_{\gamma} \sim E_{\gamma}/t_0 >> L_{Edd} \rightarrow expanding (v \sim c)$ fireball

(Cavallo & Rees, 1978 MN 183:359)

• Observe $E_{\gamma} > 10 \text{ GeV} \dots \text{but}$

 $\gamma\gamma \rightarrow e^{\pm}$, degrade 10 GeV $\rightarrow 0.5$ MeV? E_{γ} E_t >2(m_ec²)²/(1-cos Θ)~4(m_ec²)²/ Θ ²

Ultrarelativistic flow $\rightarrow \Gamma \geq \Theta^{-1} \sim 10^2$ (bulk Lorentz factor)

(Fenimore etal 93; Baring & Harding 94)

Mészáros, L'Aqu05

Relativistic Outflows

- Energy-impulse tensor : T_{ik} = w u_i u_k + p g_{ik} , uⁱ : 4-velocity, g_{ik} = metric, g₁₁=g₂₂=g₃₃=-g₀₀=1, others 0; ultra-rel. enthalpy: w = 4p ∝ n^{4/3}; w, p, n : in comoving-frame
- 1-D motion : $u^{i} = (\gamma, u, 0, 0)$, where $u = \Gamma (v/c)$,

v = 3-velocity, **A**= outflow channel cross section :

 Impulse flux energy flux particle number flux

Isentropic flow : L, J constant →

w Γ /**n** = **constant** (*relativistic Bernoulli equation*);

for ultra-rel. equ. of state p $_{\rm \propto}$ w $_{\rm \sim}$ $n^{4/3}$, and cross section A $_{\rm \propto}$ r^2

$$\rightarrow \mathbf{n} \propto \mathbf{1} / \mathbf{r}^2 \mathbf{\Gamma}$$
$$\rightarrow \mathbf{\Gamma} \propto \mathbf{r}$$

comoving density drops

"bulk" Lorentz factor initially grows with r.

 But, eventually saturates, Γ→E_j/M_jc² ~ constant

 $\rightarrow \Gamma \sim const.$
Also expect:

Internal & External Shocks in optically thin medium : LONG-TERM BEHAVIOR

Internal shocks (or other, e.g. magnetic dissipation) at radius r_i~10¹²cm

\rightarrow **γ-rays** (*burst*, t_y~sec)

- **External** shocks at r_e ~10¹⁶cm; progressively decelerate, get weaker and redder in time (Rees & Meszaros 92)
- Decreasing Doppler boost: → roughly, expect radio @ ~1 week , optical @ ~1 day (Paczynski, & Rhoads 93, Katz 94)

PREDICTION :

•

Full quantitative theory of:

External *forward* shock spectrum **softens** in time:

X-ray, optical, radio ...

- →long fading afterglow
- (t ~ min, hr, day, month)
- External *reverse* shock (less relativistic, cooler, denser):

Prompt Optical → quick fading

(t ~ mins)

(Meszaros & Rees 1997 ApJ 476,232)

Mészáros grb-gen06

Fireball Shock Model of GRBs

GRB 0809 16C Spectrum : up to ~10 GeV (obs.)

- "Band" (broken power-law) fits, joint GBM/LAT, in all time intervals
- "Soft-to-hard" spectral time evolution
- Long-lived (10³ s) GeV afterglow
- Little evidence for 2nd spectr. comp. (in some cases)

Some observed photon energies and redshifts

E _{obs} (GeV)	Z
13.2	4.35
7.5	3.57
5.3	0.74
31.3	0.90
33.4	I.82
19.6	2.10
2.8	0.897
4.3	1.37

Even z>4 bursts result in E₀bs~10 GeV photons
Some z~l bursts produce E₀bs≥30 GeV photons
(130 GeV in rest frame!)

→ encouraging for low E_{th} ACTs: HAWC, CTA...

(A) Evolving Fireball paradigm:

Recent thrusts in exploring the prompt emission:

A) De-emphasize internal shocks (inefficent)

→ dissipative photospheric models

or:

B) Modify internal shocks : slow heating,
(i) turbulence behind shocks (Fermi 2nd ord),
(ii) magnetic dissipation (high rad. efficiency),
(iii) hadronic cascades (naturally slower heat'g)

et al. 07; Beloborodov 09)

p-n coll. $\rightarrow e \pm \rightarrow \gamma$ -spectrum

- The result is a thermal peak at the ~MeV Band peak, plus
- a high energy tail due to the non-thermal e[±], whose slope is comparable to that of the observed Fermi bursts with a "single Band" spectrum
- The "second" higher energy component (when observed) must be explained with something else

(Beloborodov, 2010)

Universal Diffuse Number Flux of **Photons**

Aggregate of all sources: → diffuse radiation background

IXB = isotropic (X) background where **IGB, INB, ICRB** is Isotropic γ, ν, cr bkg.

Cosmic Ray Spectrum

I l dex in energy32 dex in # flux!

Cosmic ray flux and Composition

Universal Diffuse Number Flux of **Neutrinos**

What is the **Relation** between **UHECRs and UHENUs?**

UHECR = Ultra-High Energy Cosmic Rays UHENU = Ultra-High Energy Neutrinos

define HE $\approx 10^9 \text{ eV} (\text{GeV})$ VHE $\approx 10^{12} \text{ eV} (\text{TeV})$ UHE $\approx 10^{18} \text{ eV} (\text{EeV})$

Why Neutrinos?

Neutrinos are ideal astrophysical messengers

- Travel in straight lines
- Very difficult to absorb in flight

And

- Unlike photons and charged particles, which at high energies get absorbed in flight,
- the neutrino mean free path is essentially the Hubble horizon; i.e. unbounded

UHECR : maximum energy ?

gyroradius: $r_L \sim ct_{gy} \sim m_p \ c^2 \gamma / ZeB = \epsilon_p / ZeB < R \ (size \ of \ accel.)$

But if relativistic expansion, bulk Lorentz factor $\Gamma >> 1$, then time_{obs} ~ R/c Γ , and size_{obs} ~ R/ Γ , hence need

$$\Rightarrow L > 2 \frac{\Gamma^2}{\beta} \varepsilon_{p,20}^2 \times 10^{45} \mathrm{erg/s}$$

 \Rightarrow GRB, AGN..?

(only strongest qualify !)

Maximum E_p for various sources (Hillas plot)

GRB? E_{max}:

- Require : $r'_L = E'/ZeB' \ge R'$)
- \Rightarrow $E_{max} \sim \Gamma Z e B' R'$
- but, what are R', B' for a GRB?

- primed: comoving;
 unprimed : lab frame;
 Γ: jet Lorentz factor
- we have R'~R/ Γ ; and external shock occurs at R where $E_0 \sim n m_p c^2 R_{dec}^3 \Gamma^2$ $\rightarrow R \sim R_{dec} \sim (E_0/nm_p c^2)^{1/3} \Gamma^{-2/3}$
- for B', energy equip. : $B'^{2}/8\pi \sim \epsilon_{B} n m_{p} c^{2} \Gamma^{2}$ $\rightarrow B' \sim \epsilon_{B}^{1/2} (8\pi n m_{p} c^{2})^{1/2} \Gamma$, so
- $E_{max} \sim Ze(8\pi\epsilon_B)^{1/2} E_0^{1/3} (n m_p c^2)^{1/6} \Gamma^{1/3}$, or
- $E_{max} \sim 2x10^{20} Z E_{53}^{1/3} \varepsilon_{B,-2}^{1/2} \Gamma_2^{1/3} n^{1/3} eV$

างเธระลาบร grb-glast06

AGN? two main types

(~1% of all galaxies)

Radio-loud: M87 (jet ~10%) (RL)

Radio-quiet: M81 (no jet ~90%)

Mészáros TeV05

RL AGN as UHE γ , CR, v sources

- Big brother of GRB: massive BH (10⁷-10⁸ M_{sun}) fed by an accretion disk → jet
- But, jet $\Gamma_{j,agn} \sim 10-30$ (while $\Gamma_{j,grb} \sim 10^2 - 10^3$)
- UV photons from disk; in addition, line clouds provide extra photons

(+back-scatter)

 Typical ("leptonic") model: SSC (sync-self-compton); SEC(sync-exter.compton)

But: are RL (jet) AGNs the UHECR sources?

- The AGNs in the VC catalog inside 75 Mpc are generally weak, not strong-jet (radio-loud, RL) AGNs and no longer statistically favored; but...
- There is possible evidence for :
 a) large angle deflections (heavy elements); and
 b) non-jet (radio-quiet) AGNs are abundant...
- Independently, correlation with matter (normal galaxies) is strong

Alternative UHECR: RQ AGNs

Pe'er, Murase, Mészáros, 2009, PRD 80, 123018 (arXiv:0911.1776)

- Could be that culprits are radio-quiet (RQ) AGNs
- Enough of them inside GZK radius
- Evidence for small jets in RQ AGNs
- Evidence for heavy CR composition (X_{max} vs. E)
- Can accelerate heavy elements to right GZK energies, $E_{max} \sim ZeBR \sim 10^{20} Z_{26}B_{-3}R_{10} eV$ (if B~10⁻³G, R~10 pc)
- Can survive photo-dissociation
- Heavy elements have larger rms. deviation angles
- Correlation with matter (gal) distribution is good.

Another alternative: Hypernovae?

← supernova SN 1006 (X-ray)

- Hypernovae: similar but ~ $10-10^2$ times more energetic; and portion of ejecta reaches \geq semi-relativistic speed, possibly anisotropic

~500 times the rate density of GRBs

Hypernova ejecta as UHECR sources

(XY Wang et al, 2007, PRD 76:3009; Budnik et al, 2008, ApJ 673:928)

- Type Ib/c but isotropic equiv $E_{HN} \sim 3-5x10^{52} erg$
- 500 times GRB rate, and 10⁻¹-10⁻² usual SNIa rate
- *Semi-relativistic (v~c, or \Gamma\beta \ge 1)* comp. in outflow (shock accelerates down the envelope gradient)
- Assume shock expands in WR progenitor wind, magnetic field fraction ϵ_B of equipartition

 $B^2/8\pi = 2\epsilon_B \rho_w(R) c^2 \beta^2 \qquad \qquad \rho_w(R) \propto R^{-2}$

Max. CR energy:
$$\varepsilon_{\max} \simeq ZeBR\beta = 4 \times 10^{18}Z$$

 $\times \epsilon_{B,-1}^{1/2} \left(\frac{v}{10^{10} \text{cms}^{-1}}\right)^2 \left(\frac{\dot{M}}{3 \times 10^{-5} \text{M}_{\odot} \text{yr}^{-1}}\right)^{1/2} v_{w,3}^{-1/2} \text{eV}$

 \rightarrow Proton: $E_{max} \sim 10^{19} \text{ eV}$, and Fe: $E_{max} \sim 2.6 \ 10^{20} \text{ eV}$

Origin of 10¹⁹-10²¹ eV UHECR: may be GRB - but what about 10¹⁶-10¹⁹ eV? HYPERNOVAE?

Radio, x-ray & gamma-ray observations of SN1998bw/GRB980425 :
 sub-energetic GRB—GRB980425: E~1e48 erg (d=38 Mpc)
 Radio afterglow modeling: E>1e49 erg, → Gamma~1-2

■ X-ray afterglow: $E \sim 5e49 \text{ erg}$, $\rightarrow beta = 0.8$

→ Mildly relativistic ejecta component

S

Ν

E_SN=3-5e52 erg V_{avg}=0.1c

Other SN/GRB w. semi-relativistic ejecta: \rightarrow

SN shock acceleration in the Envelope? Tan et al. 01 Woosley et al. 99

SN2003lw/GRB031203SN2006aj/GRB060218

Maximum energy of accelerated particles

Type Ib/c hypernovae expanding into stellar wind of WR star
 equipartition magnetic field B, both upstream and downstream

$$B^2/8\pi = 2\epsilon_B \rho_w(R)c^2\beta^2$$
 $\rho_w(R) \propto R^{-2}$

Maximum energy:HillasBell & Lucek $\varepsilon_{\max} \simeq ZeBR\beta = 4 \times 10^{18}Z$ 01 $\times \epsilon_{B,-1}^{1/2} \left(\frac{v}{10^{10} \mathrm{cms}^{-1}}\right)^2 \left(\frac{\dot{M}}{3 \times 10^{-5} \mathrm{M}_{\odot} \mathrm{yr}^{-1}}\right)^{1/2} v_{w,3}^{-1/2} \mathrm{eV}$ 01

Protons can be accelerated to ~10¹⁹ eV Heavy nuclei can be accelerated to ~Z*10¹⁹eV

Flux level--- energetics

Kinetic energy generation rate:

$$\dot{\epsilon}_k(z=0) = R_{\rm HN} E_{k,\rm HN}$$

= 2.5 × 10⁴⁶ $\left(\frac{R_{\rm HN}}{500 {\rm Gpc}^{-3} {\rm yr}^{-1}}\right) {\rm erg} {\rm Mpc}^{-3} {\rm yr}^{-1}$

Compare w. normal GRBs

Hypernova
(v=0.1c)Normal GRBsRate
(z=0)
$$\sim 500$$
 $Gpc^{-3} yr^{-1}$ ~ 1 $Gpc^{-3} yr^{-1}$ kinetic
energy3-5e52 erg
energy1e53-1e54erg

The required rate :

$$R_{\rm HN} = 750 Z^{-1.2} (f_z/3)^{-1} {\rm Gpc}^{-3} {\rm yr}^{-1}$$

$$2-5 \times 10^4 \,\,{\rm Gpc^{-3}yr^{-1}}$$

sub-energetic GRB rate: $100 - 1800 \,\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

Soderberg et al. 06
Energy distribution with velocity

Data from Soderberg et al.

Wang, Razzaque, Meszaros, Dai 07

Normal SN E_k \circ

$$k_k \propto (\Gamma \beta)^{-5}$$

Very steep distribution -> negligible contribution to high-energy CRs Berezhko & Volk 04

Semi-relativistic hypernova:high velocity ejecta withsignificant energy $E_k \sim (\Gamma \beta)^{-2}$

CR spectrum:

$$\varepsilon^2 (dN/d\varepsilon) \propto \varepsilon^{-\alpha/2}$$

Energy distribution with velocity

Data from Soderberg et al.

Wang, Razzaque, Meszaros, Dai 07

Normal SN E_k \circ

$$k_k \propto (\Gamma \beta)^{-5}$$

Very steep distribution -> negligible contribution to high-energy CRs Berezhko & Volk 04

Semi-relativistic hypernova:high velocity ejecta withsignificant energy $E_k \sim (\Gamma \beta)^{-2}$

CR spectrum:

$$\varepsilon^2 (dN/d\varepsilon) \propto \varepsilon^{-\alpha/2}$$

Transition from GCRs to EGCRs

What about Magnetars ?

Pulsar: spinning neutron star: R~10 km and magnetic field usually B~10¹² G;

but **MAGNETAR**: B~10¹⁴-10¹⁵ G (10¹⁰-10¹¹ Tesla)

Magnetars as UHECR sources?

- Surface magnetic field strengths $B_s \sim 10^{14} 10^{15} G$ (whereas "normal" NS have only $\leq 10^{12} - 10^{13} G$)
- Fraction ≤ 0.1 CC SNe may result in magnetars
- Newly-born magnetar R~10⁶ cm, $\Omega = 2\pi/P \sim 10^4 P_{-3}^{-1}$
- Light-cylinder $R_{LC} \sim c/\Omega \sim 5x10^6 P_{-3} cm (\rightarrow accel.)$
- $B_{LC} \sim B_s (R_s/R_{LC})^3 \sim 10^{13} P_{-3}^{-3} G$

$\rightarrow E_{max} \sim ZeBR(v/c) \sim 10^{21} Z B_{s,15} P_{-3}^{-2} eV$

Or: In PNS wind, wake-field acceleration can lead to UHECR energies $E(t) \lesssim 10^{20} \text{ eV Z } \eta_{-1} \mu_{33}^{-1} t_4^{-1}$

One possible type of **GZK UHECR/UHENU** astrophysical source

Standard(+) Model of GRB

(as UHECR/NU source)

Int. & ext. shocks, accelerate electrons $e,B \rightarrow \gamma$ (*leptonic*); *and* accel. protons too (2)

accel. protons too (?) $p\gamma \rightarrow v, \gamma$ (*hadronic*)

∠ internal shocks

✓ external shock

Internal shocks in jet (GRB)

e.g. black hole formation

Jet of relativistic particles

by massive star core collapse

Central engine:

Reverse shock : prompt visible/X-rays Jet shock on interstellar medium Forward shock : visible/X-ray/radio afterglow

GRB VHE neutrinos

At the simplest level:

- R_d, R_{ph} : dissipation radius where particles accelerated
- Fermi (or mag, reconn.) accel. $dN_{p,e}/dE \sim E^{-q}$
- $e^{\pm}, B \rightarrow \gamma$
- $p, \gamma \rightarrow \pi^{\pm} \rightarrow \mu^{\pm}, \nu_{\mu} \rightarrow e^{\pm}, \nu_{e}, \nu_{\mu}$
- For PL $dN_{e,p}/dE$ and $dN_{Y}/dE \rightarrow dN_{v}/dE$ also PL
- Parameters: ϵ_p , ϵ_e , ϵ_B : energy ratios of p,e,B to E_{tot}
- E_{tot}: total burst energy, Γ : bulk Lorentz factor

Vs from py from int. & ext. shocks

NOTE: internal shock (old paradigm) + simple Δ -res. approx.

- Δ-res.: E'_p E'_γ ~0.3GeV² in comoving frame, in lab:
 - $\rightarrow E_p \ge 3x10^6 \Gamma_2^2 \text{ GeV}$
 - $\rightarrow E_{\nu} \ge 1.5 \text{x} 10^2 \Gamma_2^2 \text{ TeV}$
- Internal shock $p\gamma_{MeV}$ $\rightarrow \sim 100 \text{ TeV } \nu \text{ s}$
- (External shock $p\gamma_{UV}$ $\rightarrow \sim 0.1-1 \text{ EeV } \nu \text{ s}$)
- Diffuse flux: det.w. km³

Data: IC40+59 search for VHE nus from 190 GRB (105 northern) Nature 484:351 (2012), the Icecube collab.; Abbasi and 242 others (incl. P.M.)

- Analyze 190 GRBs localized w. γ-rays betw, T_{start} & T_{end}
- Use the WB'97 and Guetta'04 proton acceleration model in internal shocks, with E^{-2} spectr, $\varepsilon_p/\varepsilon_e=10$, and $p\gamma \rightarrow \Delta$ -res $\rightarrow v_{\mu}$
- Nu-flux normalized by obs. γ -ray flux, get F_{ν} for 190 (right axis), and diffuse flux (all) assuming 677 yr⁻¹

63

Model-independent ULs

- Take observed γ-ray flux and γ-ray spectral break energy
- Use these to infer the v flux and the v spectral break energy
- The v-flux UL implies a UHECR proton flux UL, given by hatched region
- But (internal shock) models capable of explaining observed UHECR flux (data pts) are above this UL

IC59 2-year conclusions (190 GRBs)

Nature 484:351 (2012)

- The fireball (more accurately: *internal shock*) model **overpredicts** the TeV-PeV nu-flux by a *factor 3.7*, (asuming $L_p/L_e=10$, Δ -res only, Lorentz Γ ~300-600)
- For a *model independent* fit, the 95% CL nu-flux UL is $2-3\sigma$ below what would be expected if the GRBs contribute most of GZK UHECR flux.
- In these models, either L_p/L_e must be substantially below factor 3-10 assumed here, *or* the production *efficiency of neutrinos* is lower than was assumed.

A significant achievement:

- These are *conservatively* stated conclusions
- The *first time* VHE nus have put a significant *constraint* on a well-calculable astrophysical UHECR-UHENU model, at *90-95% CL*
- This is very *valuable*
- Icecube is doing *exciting* astrophysics
- A significant first step towards *GZK physics*

But, on closer look at IC3 analysis...

(Li '12, PRD 85:027301)

- IC22-59 analysis used a *simplified* version of WB97, which results in overestimated model nu-fluxes
- Assumed $(F_{\nu}^{IC}/F_p = (1/8) f_{\pi,b})$, where 1/8 because 1/2 py lead to π^+ and each ν_{μ} carries 1/4 E_{π} , and $f_{\pi,b}=f_{\pi}(E=E_b)$
- But $f_{\pi}(E) = f_{\pi,b}$ is OK only for $E_b < E < E_{\pi,cool}$;
- Also for $E \le E_b$, have $f_{\pi} \propto E$, because of decr. # of photons
- Result: *model* v_{μ} *flux overestimated by factor* ~5 (at least)
- In addition, ignored multipion, Kaon decay, etc.

So for stand. IS model

Even using the old standard paradigm of *internal shock*, but with more detailed physics (incl. multipion and Kaon production, \neq cool'g. break for π , μ , and numerical as opposed to analytical calcul.)

→ F_v predictions
 below IC40+59 !

(← Hümmer et al, '11, PRL 108:231101)

(Also: Li, '12, PRD 85:027301 ; He, et al '12, ApJ 752:29) 69

Furthermore, note that

- Internal shock model is *expedient*: it is the best documented so far, and easy to calculate ⇒ its use is *widespread*
- *But* ... int. shocks known (past 10 years) to have *difficulties* for gamma-ray phenomenology (efficiency, spectrum, etc)
- *And*, acceleration rate of *protons vs. electrons* is unknown; are protons injected into accel. process at = or \neq rate as electrons? Only energy restriction on model is $L_p/L_e \leq 10$.
- *Even* if GRB are *not* GZK sources, model indep. searches leave the interesting possibility of *lower, but observable* neutrino fluxes from GRB
- (AND:) *Alternatives to int. shock* are being investigated (less easy to calculate; e.g. *photospheric & hadronic* models)

Photospheric & internal shock GRB models

v_{μ} from magn.dissip.phot. + ext.sh.

-3 $L_{tot} = 10^{53.5} \text{erg/s}, \eta = 300$ $\cdot v(s\pi)$ -6 • $v(m\pi)$ $z=1.0, n_{ISM}=100 cm^{-3}$ -4 $\nu(\mathbf{K})$ $Log_{10}[E^2dN/dE]$, GeV cm⁻² .Ph log₁₀[E²dN/dE], erg cm $\times v(pp)$ -5 -8-6 -10⁻⁸2 5 8 9 10 3 4 6 $Log_{10}[E_{\nu}^{OBS}/GeV]]$

Gao, Asano, Mészáros '12, JCAP 11:058

Diffuse nu from MPh, Bph, IS, η =300 & IC3 lim.

Figure 3: Fireball and photospheric model quasi-diffuse flux predictions and 90% CL upper limits from the combined analysis of four years of IceCube data. Full systematic treatment is deferred to a later publication, so these limits include an assumed 6% systematic uncertainty, which is the estimated uncertainty in the most recently published analysis. The fireball and photospheric model limits are 1.72 and 1.47 times the model predictions, respectively, so these models are not yet constrained by our results.

Figure 4: Compatibility of some models [20, 21, 22] of cosmic-ray-normalized neutrino fluxes with observations. The 90% CL upper limits from the published IC40+IC59 analysis [2] as well as the new four year analysis are shown in comparison with some model predictions indicated as points with error bars. Without modification, these models are excluded by our results.

What about nus from "nearby monster" GRB 130427A?

- At z=0.34 and L_{iso} ~2x10⁵⁴ erg, GRB130427A was expected to be best candidate for nu-detection
- But, IceCube : No Detection! (GCN 14520)
- Is this *suprising*?
- At least 2 reasons why not:
- I. Expect no v-detection in standard int. shock for this GRB (in IC40+59)
- 2. Expect no v-detection in **one out of two** other **'non-standard**' models for this GRB (in IC40+59)

130427A baryonic & magnetic photosph. model

That is:

- IceCube neutrino ULs on the diffuse nu-bkg do not constrain the (fixed radius, i.e. steady state) IS model so far; will need several more years to get near the ULs
- IceCube ULs on GRB130427A do not constrain either the IS or baryonic phot. models, but do constrain mag. phot. model
- Will need consider better, time-dep models incl. effects of pair formation for model fits

A more accurate Internal Shock GRB CR/nu calculation:

- All previous GRB neutrino/CR calculations were time-independent (steady-state)
- Now can go one better on that, and do time-dependent

Time-dependent CR escape, gamma-rays & neutrinos

- Assume Internal Shock model
 but allow for shell motion and expansion, over R₀ - 30R₀.
- Use Nakar-Piran'02 variab. time distrib, and Wanderman-Piran'10 Lum. distrib., z<6
- Initial radius R0 dep. on δt; ph. sp. assumed Band, obeying E_p-L_{iso} Yonetoku-Nava relatn.
- Inject protons E⁻² spectrum, Γ=300, f_p=10 as benchmark
- MC cascades, 2 cases: neutron conversion and sudden release

Spectra at source

- Time integrated spectra from one shell (at source)
- Shown for δt=0.1 s and various lumin, for theneutron conversion model
- Blue is V_µ + V_e and their anti-flavors, before oscillation

CR + nu Diffuse Bkg

- Diffuse CR (black) and v_{μ} +anti- v_{μ} (red, after osc) for **neutron conversion model.**
- Thin dash-dot: CR w/o
 photomeson & BetheH ;
 Dash(dot): CR/∨ w/o
 GRB L >10⁵⁴(10^{53.5})erg/s
- Thin red: cosmogenic nu
- Gray thick: IC3 40+59 diffuse UL for brokenPL
- Diamond: our integrated
 flux assuming broken PL
 & uncert. break range

CR + nu Diffuse Bkg

- Diffuse CR (black) and ν_µ+anti-ν_µ (red, after osc) for sudden release model.
- Thin dash-dot: CR w/o photomeson and BH ;
 Dash(dot): CR/V w/o GRB L >10⁵⁴(10^{53.5})erg/s
- Thin red: cosmogenic nu
- Gray thick: IC3 40+59 diffuse UL for brokenPL
- Diamond: our integrated flux assuming broken PL & uncert. break range

In other words:

- IceCube neutrino ULs on the diffuse nu-bkg do not constrain the GRB IS model so far; will need several years to get near the ULs
- IceCube does not constrain the GRB IS model's ability to produce 10¹⁹-10²¹ eV UHECR
- Even moderate $L \sim 10^{53}$ erg/s GRBs with $f_p \sim 10$ are able to explain GZK CRs (**but** below the ankle need other sources- known this for long)
- Thus, GRBs **do not** explain the diffuse PeV nus
- But GRBs may contribute significantly to the observed flux of 10¹⁹-10²¹ eV UHECR

More recently, Iate 2013: ICECUBE announced

The first detection of "certified" astrophysical neutrinos

The PeV **INB-IGB** Connection: GRBs? AGNs? SFGs? HNe? GMSs?

- PeV nu INB obs. by IC3 is ~10⁻⁸ GeV/cm²/s/sr, but IC3 limit on GRB nus is factor ~10 below ("standard" IS or photosphere- ICRC13) → could be EM dim/nu-bright GRBs? (Liu & Wang 13, ApJ 766:73, Murase & loka, 13, PRL 111:121102)
- PeV nu INB from hadronic low lum. AGNs: scaling L_p from L_e via L_{phot}, , argue that FRI RGs (higher density knots) ~ reproduce via pp the PeV nu bkg (Becker Tjus+, arXiv:1406.0506) → also IGB?
- **PeV nus** from individual **bright** radio-gamma AGNs (**blazars** in TANAMI sample), interpreting X- γ flux as due to $p\gamma$ photohadronic interactions, conclude that 6 of these blazars within $I\sigma$ error box of the three PeV events could account for the **INB** (Krauss, et al, 1406.0645) \rightarrow **IGB**?
- Starburst galaxies (SBGs), if responsible for PeV nu INB via pp, can contribute ~20% of the gamma background (IGB) (Chang et al, 1406.1099)

IGB (Fermi) & resolved sources

- Black triangle: Fermi IGB spectrum, Abdo+2010, PRL 104:101101
- Red line: FSRQ, blue line: BL Lac contributions
- Magenta star/green circle: upper/lower 95% CL forecast of Fermi-LAT 95% CL 5 year sensitivity
INB & IGB from pp sources

Murase, Ahlers, Lacki 13 PRD 88, 121301

- Stress pp vs. pγ because
 no >>GeV threshold
- Use IC3 det. of PeV vs, consider π[±]→ν DNG & π⁰→2γ IGB & satisfy Fermi/LAT bound, also lack of Glashow reson.
- Conclude $\Gamma_P \sim 2.0-2.18$ with cutoff <3-4 GeV \checkmark
- Sources could be galaxy cluster shocks (IGS) or SFG/SBG - cutoff may be t_{diff} ~t_{inj} (or t_{diff} ~t_{pp},t_{adv})

SFG-SBG and the IGB

Lacki+14, apj 786:40

- Red: CXB; blue: SMM: green X: COMPTEL, gold star: EGRET, blue triangle: EGR error est; magenta square: Fermi
- Black line: total γ IGB

 (i) from SFG (normal) &
 (ii) from SBG (SB), inc.
 π[±] (pionic bump), etc.
 Gray shade: uncertainty
 estimate of SF IGB
- One-zone leaky box CR evolution, input from
 SNR α SFR, PL injection
 E_{p,max} ~PeV, E_{e,max} ~TeV,
 w. diffusive & γγ losses,
 constrain by GHz radio

[Fiducial (Lp/Lk)snr=0.1, SBG/SFG=0.15 (0.8, 0.05)]

SBG & IGB - host sy losses

Chang & Wang, 1406.1988

- Calibrate π⁰→2γ flux using IC3 PeV nu obs. flux,
- Assume due to SBG
- Inside host galaxy , consider γγ casc. of primary π⁰ & π[±] IC upscatt. photons.
- If **no** sync. losses, $\Phi_{\gamma,casc} \sim 0.5 \Phi_{\gamma,dbg}$
- If incl. sync.losses inside host SBG (B~mG) then Φ_Y,casc ~0.2 Φ_Y,igb

However: if IGB & INB arise in less excited galaxies (e.g. SFGs), B_{ism} may be smaller \rightarrow the sy losses are smaller, and $\Phi_{Y,casc}$ larger

INB, IGB & SFGs

Anchordoqui+14, 1405.7648

- Consider straight π±→ν
 DNG & π0→2γ IGB, so that spectrum does not violate
 Glashow ✓
- Check location of showers (circles) and tracks (♠) and known SFGs
- M82, NGC253, NGC4945, SMC, IRAS18293 "corr" w. showers - but no tracks .
- Will need 10 yrs w. IC3, or a next gen. detector, to detect
 >5 track events which corr. with SFGs at > 99% CL

IGB, INB & SFG, SBGs

Tamborra, Ando, Murase 1404.1189

- Use Fermi correl $L_{\gamma} \sim L_{fir}^{1.17}$ and Herschel PEP/herMES LumFcn of FIR bright gals to $z \sim < 4$
- **N**Deduce can fit Fermi IGB
- Under same assumptions, find also that if 100 PeV CRs can be confined in host galaxies,
 ← can fit also IC3 PeV INB

Galaxy mergers, INB & IGB

Kashiyama & Mészáros, 1405.3262

- Every galaxy merged at least once in the last Hubble time
- Major mergers \rightarrow $E_{gms} \sim 10^{58.5} \text{ erg},$ $R \sim 10-4 \text{ Mpc}^{-3} \text{ Gyr}^{-1}$ $v_{s} \sim 10^{7.7} \text{ cm/s}$ $Q_{cr,gms} \sim 3 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ $\epsilon_{cr,max} \sim 10^{18.5} \text{ Z eV}$
- $pp \rightarrow PeV vs, 100 GeV \gamma s$
- ν: Indiv. GMS: 0.01 μ/yr, INB: 20-60% IC3 obs.flux
- γ: Individual GMS flux: ~3.10⁻¹³ erg/cm2/s, CTA?
 IGB ~10⁻⁸ GeV/cm²/s/sr , about *10-30%* Fermi IGB
- Minor mergers: uncertain, could add up to 70-100%

Outlook & Issues

- Both in AGNs and GRBs, major question is whether basic emission is leptonic or hadronic - contribution to the observed CRs/UHECRs and PeV nus?
- Location of the GeV(TeV) emission region (inner/outer jet, photosphere?) Role of (which?) target photon sources
- Role of pair cascades in VHE spectrum formation
- Do galaxy/cluster shocks and/or galaxy merger shocks contribute much (all?) of SFG/SBG VHE radiation?
- Relative contribution of AGNs, SFG/SBG/GMS to the IGB and/or the INB? is pp, pγ or leptonic dominant in γ?

Outlook (continued)

- The sources of the UHECR are still unknown..!
- They are almost certainly astrophysical sources (not TD)
- GRB remain good candidates, as well as AGNs, HNe, RQ, maybe MGRs.
- Will increasingly constrain such possibilities with GeV and TeV photon observations
- Will learn even more if & when astrophysical UHENUs are observed from any type of (individual) source
- Constraints from diffuse (and intrasource) γ-ray and nu emission will also be very useful, and may remain for a long time the main constraint
- Composition and clustering will provide important clues