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We suggest the modification of the standard approach to TMDs. The modification consists in
the consideration of the small bT operator product expansion in the different operator basis. In-
stead of power expansion we suggest to use the Laguerre polynomial expansion. Within such a
scheme the first term of OPE saturates TMDs in the wider range of bT in comparison to the power
expansion that decreases the significance of non-perturbative factor at small bT . The presented
modification does not violate any TMD properties and can be used within any formulation of
TMD factorization.
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1. TMDs with maximum perturbative content

Transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmen-
tation functions (FFs) (we will refer them collectively as TMDs) are universal functions which
accumulate information about intrinsic structure of hadrons. TMDs express the leading behav-
ior of processes with two detected states in the range of intermediate transverse momentum Q ≫
qhT ≫ ΛQCD. The examples of such processes are Drell-Yan process, semi-inclusive deep inelastic
scattering (SIDIS), and e+e−-annihilation to two jets. The typical expression for the hadron tensor
reads [1, 2, 3] (here for SIDIS)

W µν(Q,qhT ) = ∑
f

Hµν(Q,µ)
∫ d2bT

(2π)2 e−iqhT bT Ff/A(x,bT ; µ,ζA)DB/ f̄ (z,bT ; µ,ζB)+Y, (1.1)

where H is the hard coefficient function, F(D) is TMD PDF (FF), x and z are longitudinal parts
of parton momenta, µ and ζ are scales of the factorization. The Y -term accumulates corrections
significant at qhT ∼ Q.

TMDs depend on four parameters. So, the dependence on factorization scales µ and ζ is
given by renormalization group equation (RGE) and Collins-Soper-Sterman (CSS) equation [4].
These dependencies have been intensively studied during last years (see e.g.[5, 6, 7, 8]). While
the dependence of TMDs on the parameters x and bT cannot be extracted within perturbative
QCD due to nonperturbative nature of hadron states. In this paper we concentrate on the x− and
bT−dependence of TMDs leaving µ− and ζ -dependence aside. For simplicity, we also set aside
polarization effects and consider only non-polarized TMDs.

The explicit expression for TMD PDF has the form of a nonlocal operator sandwiched between
hadron states. The parton fields are separated by the space-like distance ξ = (0+,ξ−,bT ) and
equipped by a construction of Wilson lines. A typical representative is the quark operator for TMD
PDF (see e.g.[2, 3, 9, 10])

Oq(x,bT ; µ,ζ ) = (1.2)

Zq(µ)S−
1
2 (bT ,ζ )

∫ dξ−

2π
e−ixp+ξ−

q̄r

(
ξ
2

)
W †

(
ξ
2
,−∞;n

)
γ+

2
W

(
−ξ

2
,−∞;n

)
qr

(
−ξ

2

)
,

where qr are renormalized quark fields, W (a,b;n) is Wilson line from point a to point b along
direction n (n2 = 0). The factors Zq and S are field renormalization constant and soft factor, re-
spectively. This factors are singular and responsible for the cancelation of ultraviolet and rapidity
divergences.

The factorized expression (1.1) is suitable for the phenomenological application. However,
usually another representation for TMD is used. Following [2] we call this representation as TMD
with maximum perturbative content. In this representation TMDs are given by

F(x,bT ; µ,ζ ) =C (x,bT ; µ,ζ )⊗ f (x,µ)e−g(z,bT ,ζ ), (1.3)

where ⊗ is the Mellin convolution in x, C is the coefficient function, f is the integrated PDF and e−g

is the non-perturbative factor. This is the general ansatz for TMDs widely used in phenomenology,
although the particular details of the representation differ between approaches (compare e.g. [5,
11, 12], for the recent applications see e.g. [12, 13, 14] and reference within).
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The coefficient function in (1.3) is obtained from the leading terms of operator product ex-
pansion (OPE) for the TMD operator (1.2). We emphasize the fact that used OPE holds only in
the region of small bT . Thus one should impose a cutoff over bT . The typical size of cutoff is
b2

max = 0.5−2 GeV−2. This boundary is motivated by a convergence radius of perturbative expan-
sion for the coefficient function C.

In the representation (1.3) the non-perturbative factor plays the central role. It accumulates the
most significant portion of information on bT . One can resolve its ζ -dependance with the help of
evolution equations and present the function g in the form (see e.g.[2, 5])

g(x,bT ,ζ ) = g f (x,bT )+gK(bT ) ln
ζ
ζ0

, (1.4)

where g f and gK cannot be obtained in the model-independent way and should be fitted from exper-
iment. The prevalent parametrization for the functions g f ,K is the Gaussian ansatz, g f ,K ∼ b2

T/4B2
T .

This parametrization results to reasonable description of data. The typical size of Gaussian is about
B2

T = 0.2−0.6 GeV−2.
In any parametrization the non-perturbative function g reduces to zero at bT → 0. In this

limit TMDs match integrated parton distributions. Therefore, the representation (1.3) describes
the TMDs at small bT within the perturbative QCD, while at larger bT it is replaced by unknown
function. In the following we discuss to which limits the perturbative content of representation
(1.3) can be used and possible way to extend these limits.

2. Intrinsic scales of small bT OPE

In this section we discuss the properties of the non-perturbative factor and OPE. In the follow-
ing, we keep in mind the Gaussian ansatz for the non-perturbative factor g = b2

T/4B2
T . Moreover,

we use the expression (1.3) (with Gaussian non-pertrubative factor) as a kind of the standard, that
perfectly describes the data. We make such conjecture due to the lack of theoretical methods for
analysis of TMDs at intermediate bT . The similar arguments which we will present can be ap-
plied for any other parameterizations with the same general conclusion. The only privilege of the
Gaussian ansatz is its simplicity and popularity.

Let us consider the OPE which leads to the expression (1.3) closely. It reads

O(x,bT ) =
∞

∑
n=0

C(T )
n (x,bT )⊗O(T )

n (x), (2.1)

where the operators O(T )
n are proportional to the n’th power of transverse derivative, O(T )

n ∼ q̄∂ n
T q

and the coefficient functions C(T )
n are proportional to bn

T . We omit the factorization scales µ and
ζ for brevity. In the absence of interaction the right-hand-side of (2.1) represents the Taylor series
of the operator O(x,bT ) at bT = 0, that we indicate by superscript T . The coefficient function in
equation (1.3) is C(T )

0 in this notation.

In fact, the series (2.1) is a double expansion, because every coefficient function C(T )
n is a

perturbative series. Therefore, the series (2.1) has two main intrinsic scales bmax and BT . The scale
bmax is the universal scale of convergence for the perturbative expansion for coefficient functions. It
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is naturally connected with Λ−1
QCD. The origin of the scale BT is non-pertrubative, BT parameterizes

some intrinsic dynamics of hadron.
Taking the hadron matrix element of (2.1) one obtains TMD in the form

F(x,bT ) =C(T )
0 (x,bT )⊗ f (x)+

∞

∑
n=1

C(T )
n (x,bT )⊗ fn(x), (2.2)

where fn are integrated PDFs of higher twists. Comparing expressions (2.2) and (1.3) we conclude
that Cn ⊗ fn ∼ bn

T/Bn
T . In other words, the higher terms of OPE are of the same order at bT ∼ BT .

We stress that there are no perturbative methods to estimate the radius of convergence for OPE
(2.1), and that our conclusion on behavior of higher terms is based only on the phenomenological
significance of the non-perturbative factor.

The scale BT is generally smaller then the scale bmax. It shows that the standard approach does
not use the maximal possible perturbative range of bT , due to inefficiency of the power expansion.
It suggests to use another basis which would saturate OPE within the perturbative range by the first
terms. In ref.[15] such a modified approach to TMDs has been suggested. In the following we
present the main points of [15].

3. Small bT OPE in Laguerre basis

The main idea of [15] is to rearrange small bT OPE in order to simulate the the non-perturbative
behavior. Choosing suitable basis for OPE one can obtain any preassigned form of bT -distribution
already at the leading order. The perturbative corrections would tend to fit the expansion to the
“true” expression within the radius of perturbative convergence. The control of the convergence
is to be obtained from the comparison with experiment. Therefore, the operator basis should be
taken such that its leading terms describes the significant part of data. We call such an approach
as phenomenologically motivated OPE. Technically it goes in parallel to the standard approach of
ref.[2] and does not spoil any evolution or other properties of TMDs.

There are no special restrictions on the operator basis. It should be transversally local, orthog-
onal and complete. These are general demands which guaranty the uniqueness and existence of the
decomposition. Additionally, one can impose symmetry or other constraints, which follow from
the auxiliary guidelines. Within these assumptions one can choose any basis.

Let us assume that the small bT range of TMDs is described by the Gaussian behavior. For the
description of such a leading behavior the best choice is the basis of Laguerre polynomials Ln. We
have

O(x, |bT |) =
∞

∑
n=0

C(L)
n (x,bT ;BT )⊗O(L)

n (x;BT ), (3.1)

where O(L)
n ∼ Ln(B2

T ∂ 2). The coefficient functions of Laguerre expansion are Gaussians

C(L)
n (x,bT ;BT )∼

(
b2

T

B2
T

)n

e−b2
T /B2

T +O(αs),

which follow from the Gaussian form of the generating function for Laguerre polynomials. Addi-
tional argument in favor of Laguerre polynomial basis is that Laguerre polynomials are the only
classical orthogonal polynomials on the range bT ∈ (0,∞).
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Figure 1: Plots of the first terms Laguerre based expansion of TMD PDF (red curve) at different values
of x (x = 0.8,0.4,0.1 from left to right panels) at bmax = 1GeV−1 and B2

T = 0.24GeV−2. The thick-orange
curves are the first term of TMD PDF Taylor based expansion. The blue-dashed curves are the first term of
TMD PDF Taylor based expansion multiplied by the non-perturbative factor exp(−b2

T/4B2
T ). The evolution

exponent is omitted.

The parameter BT in (3.1) is introduced for the dimensional reason. In general, OPE is in-
dependent on this parameter although its convergence properties of OPE are dependent on it. In
particular, the Laguerre based OPE (3.1) turns to the standard Taylor based OPE (2.1) in the limit
BT → ∞. However, the truncated series which is used in practice, is BT dependent.

The n = 0 term of OPE (3.1) is proportional to the integrated PDF operator. At the same time
the higher terms of Laguerre based OPE represent the mixture of operators of different twists
including the leading one. However, this observation does not worsen the approach since the
contribution of different operators are of the same order. One can be guided only by experimental
data, and tune the parameter BT such that n > 0 terms give negligible contribution.

One may say that the change of the operator basis redistribute the power corrections between
the terms of OPE. In such a picture the parameter BT can be viewed as a handle which controls the
amount of redistributed power corrections, while Laguerre polynomials modulate the redistribution
to the Gaussian shape.

In the free theory the suggested scheme does not add anything new to the standard description
of TMDs with Gaussian non-perturbative factor. The new results and predictions of the scheme
appear with the loop-corrections to the coefficient function. The corrections produces the deviation
of the functional form of coefficient function from the free-theory limit. In the Taylor-like OPE
the corrections can contain only the logarithms of bT . In the Laguerre based expansion, the other
type of corrections are possible, e.g. power corrections and exponentials. These corrections are of
the special interest, because they show the perturbative deviation from the Gaussian ansatz. At the
same time these corrections are small within the perturbative range b < bmax and do not spoil the
general picture.

At large bT (i.e. bT > bmax) the convergence of OPE is not controlled. Therefore, the usage
of Laguerre (or any other) basis does not eliminate the non-perturbative factor. However, one can
expect that this new non-perturbative factor is much closer to unity within perturbative range in
comparison to the standard non-perturbative factor.

4. Modified expression for TMD PDF

Taking the hadron matrix element of the Laguerre based OPE (3.1) we obtain the modified
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expression for the TMD PDF. It reads

Fq/H(x,bT ; µ,ζ ) = ∑
j

∫ 1

x

dz
z

C(L)
q/ j

(
x
z
,bT ; µ,ζ

)
f j/H(z,µ)+O1, (4.1)

where f is the integrated PDF. The symbol O1 denotes the order of eliminated contribution. As we
have discussed in the previous section the estimation of O1 is impossible within the perturbative
QCD. In the following we suppose that O1 is negligible in comparison with the first term of (4.1)
within the perturbative range.

The coefficient functions C(L) have been calculated at NLO in [15] and read

C(L)
q/q(x,bT ,µ,ζ ) = e

− b2
T

4B2
T δ (1− x)+ (4.2)

2asCFe
− x2b2

T
4B2

T

[
−LT Pqq(x)+δ (x̄)

(
3
2

LT − 1
2

L2
T − π2

12
+LT ln

(
µ2

ζ

))
+ x̄

− x̄x2

4
b2

T

B2
T

LT

(
x2

4
b2

T

B2
T
−3

)
+

x4x̄
8

(
b2

T

B2
T

)2

− x2x̄
b2

T

B2
T

]
+O(a2

s ),

C(L)
q/g(x,bT ,µ,ζ ) = 2ase

− x2b2
T

4B2
T (−Pqg(x)LT +2xx̄)+O(a2

s ), (4.3)

where as = g2/(4π)2, LT = ln
(
b2

T µ2/4e−2γE
)

and P are the corresponded DGLAP kernels

Pqq(x) =
(

1+ x2

1− x

)
+

, Pqg(x) = 1−2xx̄.

At BT → ∞ these expressions reveal the standard expressions for the matching coefficients of TMD
PDF to integrated PDF ([2, 5, 8]).

In fig.1 we show the comparison of Taylor based expansion (2.2) and Laguerre based expan-
sion (4.2) (both without non-perturbative factor) with the standard expression (1.3). In contrast to
the Taylor expansion, the Laguerre expansion reproduces TMD PDF in the wider range of bT as
it was expected. At smaller x the resulting distribution is broader, i.e. the slope of Gaussian is
smaller. This is very natural result which shows that at smaller x partons are allowed to be farer
from the centrum of hadron.

5. Conclusion

We suggest the modification of the standard approach to TMDs. The modification consists in
the consideration of the small bT OPE (which is the central part of the standard approach) in the
modified operator basis. So, instead of power expansion we suggest to use the Laguerre polynomial
expansion. Within such a scheme the first term of OPE describes the data in the wider range of bT

in comparison to the power expansion.
Such an approach is systematic, in the sense that it allows one to take into account quantum

corrections systematically, and make comparison with the standard approach at every step of the
consideration. This approach does not violate the standard basic properties of TMD and TMD
factorization theorems, such as evolution equation, CSS-equation, convergence of the perturbative
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series and other. The modified expansion has the same status as the standard one, since the size of
corrections to both expressions cannot be estimated within perturbative QCD.

The choice of Laguerre polynomials as a basis for OPE is dictated by their simplicity and the
Gaussian form of resulting coefficient function (which is often used as phenomenological ansatz for
TMDs). One can use another orthogonal and complete basis which would lead to different behavior
of coefficient function, with all the rest properties of TMDs survived. In the absence of theoretical
constraints the choise of the basis can be done only by comparison with the experimental data.
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