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Dynamic memory allocation is a very important and basic technique implemented on modern
computer architecture. In the massively parallel processor (MPP) architecture such as Graphics
Processing Units (GPUs), many threads try to send allocation or deallocation requests to system
in the same time, which could cause the issue of synchronization or race condition. In this paper,
we design a new signal model with signal queue to handle the interaction of threads. Based on the
signal model, we involve the concept of buddy memory to construct a non-blocking parallel buddy
system. Our design have no synchronization problem and adopt a simpler structure implemented
than before. Finally, we implement our model in real hardware and experimental results show
that the model have better performance than other methods.
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1. Introduction

Dynamic memory allocation let processes to obtain a permitted address from memory pool,
usually handled by a memory management. The mechanism of memory management shares or
protects the content of memory using independently. There have been many research and develop-
ment about memory management on single or multi-cores CPUs architecture in the past. In recent
years, there are more and more high performance computing demand with varied applications. In
addition to traditional CPUs architecture, the MPP architectures, such as GPU plays an important
role of cooperator performing a high intensive computing. When we port the dynamic memory
allocation from CPU to the massively parallel cores environment, it may suffer some performance
issues in massive cores such like latency of memory transaction or threads synchronization that
can be a bottleneck and reduce total computing power [1]. Therefore, we need a suitable memory
management to handle dynamic memory allocation on MPP architecture.

There have been some researchers developed the allocator on MPP architecture for dynamic
memory allocation [2, 3, 4, 5]. In the past, most developments of dynamic memory allocation on
parallel computing architecture adopt free list based on superblock structures. In our work, we
will first introduce a new signal model with signal queue to handle the interaction of threads. The
buddy memory will be involved to the signal model as a non-blocking method. Finally, we im-
plement 3L-Allocator with our signal model on real GPU hardware and the experimental results
shows that our model get better performance in MPP architecture than other methods.

This paper is organized as follows. In Section 2, we first discuss the related work on dynamic
memory allocation for CPU and MPP architecture. In Section 3, we will introduce our signal
model and the non-blocking parallel buddy system. Analysis and experimental results are shown
in Section 4. Finally, Section 5 is conclusions.

2. Related Work

In recent years, some researchers have noted the importance of developing the dynamic mem-
ory allocator on MPP architecture. In 2010, Huang, et al. developed XMalloc [3], the first scalable
memory allocator on GPU. In 2012, Steinberger, et al. propose the ScatterAlloc [4], the per-
formance achieved 10 times faster than XMalloc. In 2013, Widmer, et al. [S] proposed a voting
algorithm to increase SIMD scalability named FDGMalloc that claimed to get the best performance
than before. Although these proposed methods have better performance than CUDA built-in allo-
cator, studies also established under the concept of free list and superblock structures for chunks
accessing.

There have been many methods proposed to handle the dynamic memory allocation, such as
free list, fast fits, and buddy system. The buddy system has lesser external fragmentation in com-
parison to other methods and take a constant amortized time for allocating or deallocating memory
block [7, 8]. Although many variant buddy system have been proposed on CPU environment, the
parallel buddy system on MPP architecture haven’t been proposed so far. Therefore, we construct
a new signal model and involve an efficient buddy system on MPP architecture, we will discuss
more details about our model in next section.
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2.1 Dynamic memory allocation on CPUs

Dynamic memory allocation is a classic problem of computer science, and has been used for
many decades. In 1995 Wilson et al. [9] provide a complete introduction and overview of dynamic
memory allocation in detail. The mechanism of memory allocation could be modified to get more
efficient, if it port from single process to multiple processes on multi-cores with shared memory.
That would be a challenge to solve a serious bottleneck when multiple processes try to allocate
memory concurrently. When multi-processes or multi-threads access the global shared memory,
for keeping the shared data consistent, the mutual exclusion mechanism required to handle. Hoard,
a scalable memory allocator proposed by Berger et al. [10] maintains per-processor heaps and
one global heap to avoid false sharing and increase scalability. Michael [11] proposed a lock-
free allocator to operate the atomic instruction such like Compare-and-Swap (CAS) that complete
avoid lock. The other lock-free method was proposed by Hudson et al. [12], they implemented the
McRT-malloc, a non-blocking transaction aware memory allocator.

2.2 Dynamic memory allocation on MPP architectures

A massively parallel architecture, meaning that it possibly take many synchronization for dif-
ferent memory requests with threads. However, too much synchronization similar to access by
serializes and cause the benefit of parallel processing decreasing. Therefore, memory management
in MPP architecture need to redesign. The first introduced the dynamic memory allocation on
MPP architecture is XMalloc [3]. XMalloc refers Hoard’s method [10] to use the concept of su-
perblocks and using the atomic CAS operation by Michael’s lock-free allocator. Later, Steinberger
et al. proposed the ScatterAlloc [4] to get better performance than XMalloc. They proposed a new
method to reduce the overhead of memory requests causing collisions on hashing. FDGMalloc
was recently proposed by Widmer et al. [5], base on the concept of superblocks, FDGMalloc try
to solve the bottleneck of SIMD scalability, they reduce the amount of memory requests by their
voting algorithm. In their results show that the FDGMalloc got the better performance than other
allocator on MPP architecture in the past.

3. Signal Model

While threads execute Allocate() or Free() functions, threads need to access the free list. In our
work, we regard the free list as a signal queue that can pass different signal values by threads. Each
item of free list named a slot that the thread send or receive signal from a slot, and the slot points
the state of memory block. We construct a finite-state automaton (shown in Fig. 1) to describe
the Allocate() state of each thread wishes to access a slot in the free list. There have five mainly
states to describe the behavior of threads negotiate with slots, they are INIT, EMPTY, CAPTURED,
ADDRESS and OVERFLOW. These states are changed by different signals triggered. The thread
claims a signal from a slot, the slot has signal values stored in SIG_EMPTY, SIG_CAPTURED,
SIG_OVERFLOW and SIG_ADDRESS. We will discuss how to extend this signal model as non-
blocking parallel buddy system in following paragraphs.
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Figure 1: The finite-state automaton of allocation.

3.1 Buddy Memory

First we introduce our buddy memory, in contrast to single free list, the buddy memory is
a variable-size-block memory system, for managing on variable size memory system, a natural
extension from fixed-size-block memory is constructed by multiple free lists. These free lists record
the block size which grow up with 2%, where k can start from specific positive integer to increase
with different levels. We call the level k with 2% block size point to memory pool in each item. The
2k block size is current level, 2Kt is upper level and 2k=1 is lower level. Allocate() and Free() in
each free list of buddy memory inherited from the single free list, steps of functions we define as:
Allocate():

1. Find the first free list with record size larger than request size.

2. Take a item from the target free list.

3. Record the level of multiple free lists to the level table (LT).

4. If the target free list is empty, allocate two resources from upper list splits.
Free():

1. Find the target free list to free (lookup LT).
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2. Return the released address to the target free list.

3. When an address have returned to free list from previous step, if its buddy is also in the free
list, then combine them and return to upper level.

In buddy memory, the Allocate() take a arithmetic operation as ceil(log(requested size)) to de-
termine which level access. In the step 4 of Allocate() named pair-creation, if the pair-creation
happened, it would take extra O(h) time in worst, where h equal log( maximum block size / mini-
mum block size ) is a constant. The Free() operation also take a constant time to find the target free
list, when a address returned, we try to find their buddy which split from upper level by Allocate()
before. The buddy address can be calculated by exclusive OR of address and block’s size. While
the buddy found, we combine both of them and free up to upper level.

3.2 Non-blocking Parallel Buddy System

Base on the signal model and buddy memory, we design a new model let multiple threads
access the buddy memory. In our work, we define free list as a standard circular queue in our
buddy memory, and we place HEAD and TAIL as global shared pointers to each level in buddy
memory. Initially, every items in each free list are set to SIG_EMPTY except for the first level has
a SIG_ADDRESS with the location HEAD points, SIG_ADDRESS is shown as an address value
with the corresponding slot in our system. In addition to the last level, HEAD and TAIL pointers
are start from the position O in each level. If the closed interval [HEAD, TAIL] exists, then threads
will be allowed to receive a slot signal from it. If the thread received a SIG_ADDRESS value from
a slot, then we claim that the thread successfully request a memory block and return the address
for directly access in the future. If the thread release the memory block allocated before, then send
the allocated address as SIG_ADDRESS to the target free list in the specific slot. The method of
Allocate() and Free() works as follows.

Allocate(): The finite-state automaton is shown in Fig. 1, while threads start from INIT state,
threads find the target free list and execute single atomicADD operation for booking a new slot
with unique ID per thread, then the thread enter in EMPTY state and listen the signal from this
slot. There are different paths while the thread receive different signals in EMPTY state:

e SIG_ADDRESS: The thread returns the SIG_ADDRESS value as a address in ADDRESS
state (allocate successfully).

o SIG_OVERFLOW: The thread returns failure in OVERFLOW state (memory resources is
not enough).

e SIG_CAPTURED: The slot ID is expiration and restart from INIT state (SIG_CAPTURED
was sent by Free()).

e SIG_EMPTY: Check if the slot ID exceed TAIL? If yes, then execute the even-odd pair-
creation.

The odd-even pair-creation for threads could be odd or even working thread in each round, see Fig.
2, odd threads execute single atomicADD let [HEAD, TAIL] add 2 new slots at the end, then odd
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Figure 2: Threads in EMPTY state, if the slot ID > TAIL, then do odd-even pair-creations. Odd threads add
new slots and eve threads wait to receive the address in single round.

threads recursively execute the Allocate() in upper levels until return two SIG_ADDRESS in new
slots, while even threads wait other threads to send the SIG_ADDRESS to its new slot. If the odd
thread receive SIG_EMPTY in this time, then keep in EMPTY state and change to even thread in
next round and vice versa.

Free(): Assume the allocated address is held on the thread. The thread will try to send the address
as SIG_ADDRESS to the slot when it execute Free(). The method works as follows steps:

1. Store address A into free list.

2. Calculate the buddy address with B = A XOR block’s size.
3. Check if B is in the free list, if not then return.

4. Try to remove min(A, B) from free list and set the corresponding slot with SIG_CAPTURED
in single atomicCAS operation, if fail then return.

5. Try to remove max(A, B) from free list and set the corresponding slot with SIG_CAPTURED
in single atomicCAS operation, if fail then set A = min(A, B) and go to step 1.

6. Free min(A, B) to upper level.

Follow above steps, we know the thread must ensure that the buddy address whether freed or not,
and in the same time, the other thread may check its buddy address, too. If there exists two threads
which one thread’s freed address equal other thread’s buddy of freed address in the same time, it
may happen on one of them already freed address to upper level, but the other thread believe that
it still hold on its address. To avoid this race condition happened, we design the order of address
taken is consistent. In step 4, threads always remove the smaller address at first, then remove the
other bigger in step 5, finally free the smaller to upper level recursively in step 6.

To handle the directly access in Free(), the memory pool content of buddy address record
the slot id and the thread can directly use the slot ID to check the value of the slot. Therefore,
we add a step 0 before step 1, the thread store the slot ID in memory pool. Note that we cannot
arbitrarily change the order of step 0 and step 1. Because once the slot is set to SIG_ADDRESS,
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Figure 3: The figure shows the performance comparison of our proposed 3L-Allocator, CUDAMalloc, and
FDGMalloc [5]. The execute time of each round of allocating and deallocating memory. In the test run with
16K bytes, the CUDAMalloc failed to execute, thus we omitted it in this case.

the SIG_ADDRESS may be moved to other slot by other thread, and then the corresponding slot
ID stored in memory pool would be error.

4. Experimental Results

Our experiments environment were performed on a linux PC with Intel Core 17 920 CPU, 6G
RAM, NVIDIA Tesla K20 with 2496 cores and SGB GDDRS5. We compare with the FDGMalloc
[5] with different allocation sizes and different numbers of CUDA threads. In Fig. 3, the size of
thread blocks fixed on 512 threads per block, different numbers of thread blocks from 32 to 512,
and a allocation size set {16, 256, 16384} bytes. In this test, the kernel function call Allocate()
and Free() functions in a single time, that is each thread executed their Allocate() and Free() once,
then exited kernel immediately. The CUDA Malloc is a build-in CUDA toolkit allocator and the
FDGMalloc claimed that have better performance than other parallel allocator proposed before,
therefore we compare with FDGMalloc. In Fig. 3, all the execute time of our 3L-Allocator are
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Figure 4: The figure shows that 3L-Allocator spend lesser time to execute Allocate() and Free() operations
in single period. The kernel function with 512 threads per block x 512 thread blocks and allocation size
from 0.2K bytes to 16K bytes.
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Figure 5: The figure shows results of two case between 3L-Allocator and FDGMalloc, one is for executing
all the same allocations sizes with each thread, the other is for random generate sizes of memory requests.
The kernel function is launched by 512 threads per thread block and total 512 thread blocks. All threads
execute 100 times in the kernel function with Allocate() and Free() concurrently.



A New Non-Blocking Approach on GPU Dynamical Memory Management Jon-Yu Lee

lesser than CUDA Malloc and FDGMalloc, and the average speedup is approximately 29 times
faster than CUDA Malloc and up to 3.3 times faster than FDGMalloc in these cases.

For clearly prove that 3L-Allocator have better performance, in Fig. 4, shown the different
allocation sizes from 0.2 KB to 16 KB and launch the kernel function with 512 threads per block x
512 thread blocks. All the Allocate() and Free() operations only execute once of each thread in the
experiment of Figure 4. Because we allocate a fixed size memory with each memory request, 3L-
Allocator always access the same level of buddy memory. While many pair-creations are finished
in EMPTY state, threads get the allocated address. Threads make memory requests in constant
time and release it also in directly access.

For measuring the impact of serial allocate and deallocate memory during time, we let threads
executing Allocate() and Free() operations in many times of once kernel launch. In Fig. 5, we
design two cases, case one allocate the same fixed-size memory with each thread during 100 times
iteratively. Each time of iteration execute Allocate() and Free() operations, individually. The case
two also let each thread execute 100 times iterations of Allocate() and Free(), the difference is the
same fixed-size memory changed to create the variable-size of randomly generate between each
thread. The randomly generator in kernel function is applied by CUDA CURAND Library [13]. In
Fig. 5, 3L-Allocator is faster than FDGMalloc in these two cases, the average speedup is approx-
imately 2.9 times in case one, and 2.5 times in case two. Because the feature of defragmentation
in buddy system, the system only take little overhead for compaction of memory that keep the Al-
locate() and Free() in constant time. In Fig. 5, we find that some random set of memory requests
could cause some rise and fall of the curve in 3L-Allocator, the surmise is in many distributed
random requests may cause the different recursively times for pair-creation or reduce the times of
restart when threads allocate.

5. Conclusion

In this paper, we develop a new signal model to handle the dynamic memory allocation on
MPP architecture. In our model, we take the item of free list as a slot. Threads pass the signal
by the slot, that is a non-blocking send/receive communication between threads. Base on the non-
blocking signal model, we involve the buddy system as a non-blocking parallel buddy system.
We implement the non-blocking parallel buddy system as 3L-Allocator and compare with CUDA
Malloc and FDGMalloc on GPU. In comparable cases, 3L-Allocator is approximately 20 to 60
times speedup faster than CUDA Malloc and 2 to 3 times speedup faster than FDGMalloc. In these
results of our experiments show the 3L-Allocator with well scalability and keeps a small range of
execute time in many cases. In addition to benefits of performance, our model implement is simpler
than other allocator and without complex data structure and algorithm.
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