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1. Introduction

Rotational submanifolds play an important role at submanifolds theory of riemannian mani-
folds (see, for example, [1] and [2]). They also play an important role at the study of marginally
trapped surfaces which, by their turn, are important to study black roles (see [3] and [4]).

There are lots of definitions of rotational submanifolds: rotational submanifolds in R” (see
[5]), rotational hypersurfaces in constant curvature spaces (see [1]), rotational hypersurfaces in
S" x R and H" x R in (see [6]), and other definitions. But constant curvature spaces, S" x R and
H" x R are submanifolds of pseudo-euclidean spaces, therefore, it is possible to use one definition
which will serve at all theses cases, we just have to define rotational submanifolds in pseudo-
euclidean spaces.

In order to define rotational submanifolds in pseudo-euclidean spaces, some notations are used.
A pseudo-euclidean space R}, t < n, is the vector space R" together with the inner product given
by

Zx,yl + Z XiYis
i=t+1
where x = (x1,--+ ,X,), ¥y = (y1,--+ ,yn) and the symbol ":=" means "equal by definition". We are
going to use the following definitions:

[l := x,x) ;
S":={xeR"||x[|*=1};
S"(p,r) = {x € R} | |x—pl* =}
$"(p,—r) == {x R} | |x—pl* = —*}:
"':{xGS"( ,—1)| x; >0}
= {xeR}| ||lx||* =0}, is the light cone;
:={x€R|[|x||* =0and x# 0}, is the light cone without the origin.
Let x € R?. We say that x is: spacelike, if ||x[|* > 0; timelike, if ||x||*> < 0; or lightlike, if
||x[|* = 0. Given V C R a vector subspace, we say that V is:

e spacelike, if every vector of V is spacelike;
o timelike, if there is a basis of V in which the inner product of two vectors of V can be written

like
Zv wi+ Z viw;,

i=s+1
where s <t and m < n;

e lightlike, if the inner product in V is degenerated.

Let R"~4~! a vector subspace of R”, with 1 < g < n—2. Lets denote the group of all linear
isometries of R" by O, (n) and by O(g+ 1) the subgroup of O, (1) which fixes every point of R4~

Definition 1. Let R""9 be a vector subspace of Rl and f: N" 1 — R""9 be an immersion such
that R"~4~1 ¢ R"~4 and f(N)NR"~9~! = . The rotational submanifold with axis R"~9~! on f
is the union of the orbits of points of f(N) under the action of the group O(q+ 1), ie., it is the set

{A(f(x))|xeNand A€ O(qg+1)}.
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In the euclidean case (R} = R"), the above definition is the same given in [S]. A more general
definition for the euclidean case can be found in [7].

Our first objective is to prove the following proposition:

Proposition 2. Let R"~4~! ¢ R""9 be two vector subspaces of R and f: N4 — R""4 an im-
mersion such that f(N)NR""9~! = &, Let also M be a rotational submanifold on f, with axis
R4~ 1,

L
1. Lets suppose that R"~4~1 has index s (ie. R" 971 = R, Rffxl = <R?_4_1) and

w: R} — RY "V is the orthogonal projection of R} = R?jsl SR on R

(a) If R"™4 has index s (R"4 = RE), lets consider S(0,1) C RIT! and X, € RN
1 _
(R?ﬂrl) a unit spacelike vector. In this case, we can define M and g: N x S(0,1) —
M by
M:={fix)S+n(f(x))[xeNand £ €S(0,1)} and g(x,&):=fi(x)E+m(f(x)),

where fi(x) := (f(x),X1). .
(b) If R" 1 =R{, lets consider S(0,—1) C R?jsl and X, e R7. 1N (Rff‘rl) a unit
timelike vector. In this case, we can define M and g: N x S(0,—1) — M by

M:={fix)é+n(f(x))|xeNand & €S(0,—1)} and g(x,&):=fi(x)E+n(f(x)),

where fi(x) := — (f(x),X1). |
(c) If R"4 is lightlike, lets consider £* C R and X; eR"™IN (R?fq%) a lightlike

t—s

vector. In this case, we can define M and g: N x £* — M by

M:={fix)+a(f(x))|xeNand& € £*} and g(x,8):= fi(x)§ +m(f(x)),
where fi(x) is the component of f(x) in the X, direction, ie., f(x) = f1(x)X; + n(f(X)).

2. Let suppose that R"~9~ is lightlike and there are non-degenerated vector subspaces U,V C
R? and lightlike vectors X\ and X, such that (X1,X,) = 1, R* 9! = span{X,} ®U and
R? = span{X1, X} U &V. In this case, let : span{X;} OV @R 41 — R 97! pe the
projection application.

(a) If R" 9 =span{X;,Xo} DU, lets define M and g: N xV — R by

M= {fl(x) <x1+v—@ 2> +7(f(x))

v[1*

st i= ) (Xr+v = e ) (),

xGNandveV} and

where fi(x) = (f(x),X2).
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(b) If R""9 = span{w, X, } © U, where w €V is a unit vector, lets consider € := ||w|* and
S(0,€) C V and we can define M and g: N x S(0,€) x R — R by

M:={filx) AX2+&)+n(f(x))|xeN, £ €S(0,€) and A € R} and
8(x,8,1) == f1(x) (AX2 + &) + 7(f (%)),
where fi(x) =€ {f(x),w).

In any of the above cases, M = M. Furthermore, in the cases (I.1), (1.2) and (IL1), g is an
immersion. With the hypothesis that N is a riemannian manifold and f is an isometric immersion,
g is also an immersion in the cases (1.3) and (11.2).

This proposition studies some of the possible cases for rotational submanifolds in R}, but
there are some other cases which were not studied, for example, the case in which Rr—4-1 =
Rg'*q*l%@span{vl,m ,V¢}, where vy, ---, v are orthogonal lightlike vectors. Besides that, if
t =1, that is, R} = " is the Lorentz space, then Proposition 2 is enough.

Corollary 3. Proposition 2 classifies all rotational submanifolds in IL" on an immersion f, accord-
ing to the codomain of f and to the rotational axis.

Once we have proved those results, we want to show another one but, first, we need some
definitions.

Let M}* and N}* be two pseudo-riemannian manifolds and f: M — N;' an isometric immer-
sion. Given a vector 1 € T;-M, it’s conformal nullity subspace is given by

Eq(x):={X e T\M|o(X,Y) = (X,Y)n, V¥ € T,M}.

We say that ) € I' (T+M) is a principal normal if dim Ey, (x) > 1, for all x € M. If 1) is a principal
normal, Ey has constant dimension and 7] is parallel in the normal connection of f along Ey, then
7 is called a Dupin normal of f. In this case, the number dim E}, is the multiplicity of 7).

A distribution Z in a riemannian manifold M" is umbilical if there exists a vector field
@ €T (27) such that V4Y = (X,Y) ¢, for all X and all Y in I'(Z), where V4Y is the orthogo-
nal projection of VxY on 2. The vector ¢ is called mean curvature vector of the umbilical
distribution 2. If & is umbilical and it’s mean curvature vector is null (¢ = 0), then Z is called
totally geodesic. 7 is called spherical if 2 is umbilical and V% ¢ = 0, for every X € ['(2).

Our main result is the following theorem, which generalizes a similar theorem made in [5] for
the euclidean case:

Theorem 1. Let M™ be a riemannian manifold, f: M™ — R} an isometric immersion and 1 a
Dupin normal of f with multiplicity q and such that 1 # 0 in every point of M. If E# is totally
geodesic, then there exists a rotational immersion g such that f(M) is a subset of the image of g.
Furthermore, we have one of the following cases:

1. There is an orthogonal decomposition R} = Re+1 @R;"_q_l such that g: N9 x §1 —
RITT SR s given by
g(x,y) = p+r(x)y+h(x),
where p € R" is a fixed point, r(x) >0, r(x)y € R, h(x) € R/ and R4 is the

rotational axis.
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2. There is an orthogonal decomposition R} = LIt @R ! such that g: N"1xS(0,—1) —
La+! @R;’_}q*l is given by
g(x.y) = p+r(x)y+h(x),
where p € RI is a fixed point, S(0,—1) C L4M, r(x) > 0, r(x)y € L4, h(x) e R4 and

—g—1 . . .
R;’_Iq is the rotational axis.

3. There are lightlike vectors ey, e, € R} and an orthogonal decomposition R]! = span{e;, ez} &
Rq@R:'_}q*z such that {ey,e;) =1 and g: N1 x R? — R} is given by

2
ge) =g+ 109+ o) 100 2 0 1yt a0,

where q € R} is a fixed point, gi(x) >0, g3(x) € R;’:Sq:zz and span{e,} @R;’:zqu is the
rotational axis.
In [9], this theorem is used to to show that some umbilical submanifolds of a product of two
constat curvature spaces are rotational submanifols in RY.

2. Proof of Proposition 2 and Corollary 3

Let £ be the light cone without the null vector (origin).

Proof of the cases (1) of the Proposition 2.
Let M := {A(f(x))|x€ Nand A € O(g+ 1)} be a rotational submanifold on f. We have to
show that M = M and that g is an immersion.
(L1): Let R" 7 =RY 4. Since R;’qul is a vector subspace of Ry ?, there exists a unit spacelike
il
vector X; € Ry 7N (R?_q_l) . Thus, f(x) = fi(x)X; + w(f(x)), where fi(x) := (f(x),X1).

Affirmation 1: M C M.
If A€ O(g+1), then

A(f(x0) =A(A X +x(f(x) = fil)AX) +A(7(f(x)))-
But,
A(m(f(x))) ==(f(x)) and (A(X)),Y) = (A(X1),A(Y)) = (X;,Y) =0,
forall Y € R" 9", because A fixes the points of R? 97",
Thus A(X;) € S(0,1) ¢ RZT! 1 RI47! since A(X;) LR 4" and [|[AX)|)? = ||X:]*> = 1.
Therefore A(f(x)) = fi(x)A(X;) +m(f(x)) € { i(x)§ + m(f(x))| x€Nand & € S(0,1)}. v

Affirmation 2: M C M.
Letxe Nand & €S(0,1) C R;]jsl 1R Lets assume that {Xl,Xz, . ,Xq+1} and {é,Yz, .- ,Yq+1}
are two orthonormal basis of RY"! such that || X;||> = [|v;||%. If {X442,-+,X,} is an orthonormal
basis of R 9~", then we can define A € O,(n) by
E, ifi=1;
AX) =Y, ifi=2,,q+1;
Xi 1fz:q+2,,n



Rotational Submanifolds in Pseudo-Euclidean Spaces Bruno Mendonga Rey dos Santos

It is clear that A € O(g+ 1) and fi (x)E + w(f(x)) = fi(X)A(X)) +A(n(f(x))) = A(f(x)). v

Affirmation 3: g is an immersion.
In deed, calculating dg(x,&)(v,v2) we get

dg(x,&)(vi,v2) = (df (x)v1,X1) &+ (f(x), X1) va + m(df (x)v1).
If dg(x,&)(v1,v2) =0, then (df(x)v,X1)E =0, (f(x),X1)v2 =0 and 7 (df(x)v;) =0, since
va LEand &,v, e R L RY 4" Thus

(df (x)vi,X1) =0, cause & #0;
vy =0, cause f(x) ¢ Ri 97! e, (f(x),X;) #0; and
w(df(x)vy) =0.
Thus
(df(x)vi, X)) X1+ (df(x)vi) =df(x)vi =0= (vi,v2) = (0,0).

Therefore g is an immersion. v" e

(I.2): The proof is analogous to the proof of the previous case. e
(I.3): Lets assume that R"¢ is lightlike (nondegenerate). Since ]R?_q_l is a vector subspace of
R"~4, there exists a lightlike vector X; € R"79N (R?_q_l) l. Thus, f(x) = f1(x)X1 + w(f(x)).
Affirmation 1: M C M.

Analogous to the Affirmation 1 of the case (I.1). v/

Affirmation 2: M C M.
LetxeNand & € Z* C R = (RY 4L and lets consider {X1. X, Xge1 }and {&,Ys, -+ Y 11 }
two basis of RZ"! such that

X1, X3, € and Y5 are lightlike;
(X1,X) = 1= (&, 12);
{X3,---, X441} and {¥3,--- Y, 1} are orthonormal sets;

{X17X2} 1 {X37"' 7Xq+1} and {§7Y2} 1 {Y37"’ 7Yq+1}'

If {Xq+2, e ,Xn} is an orthonormal basis of R?qul, then we can define A € O,(n) by

g, ifi=1,
AX) =Y, ifie{2,---,q+1}
X, ifie{qg+2,---,n}.
Thus, A € O(q+ 1) and fi (x)& + 7(f(x) = AAX)) +A(x(F(x)) = A(f(x)). ¥

Affirmation 3: If N is a riemannian manifold and f is an isometric immersion, then g is also an
immersion.
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In deed, calculating dg(x,&) (v, v2) we get

dg(x, &) (vi,v2) = (df (x)v1,Xo) &+ (f(x),Xa2) va + 7 (df (x)vy),
g+1

where X, € R/ is a lightlike vector such that (X;,X>) = 1.

If dg(x)(vi,v2) =0, then (df (x)vy,X2) & + (f(x),X2) va =0and 7 (df (x)v;) =0, since &,v, €
RN LR and m(f(x) e RY

Knowing that N is riemannian and f is an isometric immersion, we have that df(x)v; is null
or it is a spacelike vector. But df(x)v; = (df(x)vi,X2) X1 + w(df(x)v1) = (df (x)vi,X2) X1, ie.,
df(x)v; is not spacelike. Therefore df(x)v; =0 and v; = 0.

Thus, dg(x,&)(vi,v2) = fi(x)v, = 0 and g is an immersion, cause f(N)NRY ¢! = & and
fi(x) #0. v [

Remark 4. In case (1.3), through the calculations of the differential dg(x,&), it is easily proved
that g is an immersion if, and only if, f.TNNspan{X;} = {0} < RN (R"9)" N £,(TN) = {0}.
Therefore, instead of supposing that N is riemannian and f is an isometric immersion, we could
suppose that f, TN Nspan{X, } = {0}, without changing the thesis.

We need more results in order to show case (II) of Proposition 2.
Let X; and X; be lightlike vectors of R such that (X;,X,) = 1 and lets suppose that

R} = span{X,, X2} BU DYV,

where U and V are nondegenerate vector subspaces. Lets consider the lightlike vector subspace
W :=span{X,} U C R}, O(V) the group of linear isometries of V and O(V) x V the group of
isometries of V. We can define the applications .# : V — span{X;,X,} &V and ®: O(V)x V —
O,(n) by
(1
F(x) 2:X1+X—TX2 and 2.1
(Ko7

O(B,x)(v+v*) i=vt - ((Bv,xH— 5

|ny2> X, +Bv+ <X2,vl>x, 2.2)
forallv+vt e VoVt =R
In [8], it is proved the following lemma:

Lemmas5. [. .%:V — (V) isan isometry.
2. ®: O(V)XV = # is a group isomorphism, where W is the subgroup of O,(n) which fixes
the points of W.
3. W is the isometries group of % (V) = {Xl +x— @Xg ‘ xe V}.

Proof of the case (II) of Proposition 2.

Lets suppose that R"~9~! is lightlike and that there exist a nondegenerate vector subspace
U C R”" and a lightlike vector X, € R? such that R""9~! = span{X,} @ U. In this case, there exist
a lightlike vector X; € R} and a nondegenerate subspace V C R} such that

R} =span{X|, X2} U OV, (X;,X2)=1 and R"?=span{w,X,}®U,
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where w € V, or w = X].
IfA€0O(g+1)and x €N, then

A(f(x) =A(filw+x(f(x)) = filx)AW) + 2 (f(x)).
By Lemma 5, there exist an isometry B of V and a vector v € V such that A = ®(B,v).

(IL.1): Lets suppose that R"~9 = Ry~ 7 = span{X;, X, } ©U. In this case, fi(x) = {f(x),X») and we
can write f(x) = fi(x)X; + m(f(x)). Thus,

A(f(x)) = il)AX1) + 7 (f(x)).
By the other side,

A(X1) = ®(B,v)(X1) Z X, — Iv ”2X +v = A(f(x) = fi(x) <X1 v ”2x +v> +r(f(x)).

Thus, M C M.
2
Let fi(x) <X1 - %Xz—l—v) +7(f(x)) € M. Given B€ O(V), ®(B,v) € O(q+ 1), by Lemma
5. Furthermore, ®(B,v)(X;) = X — %Xz + v, thus

2
£i(2) <x1 R ) L () = AWBB.Y) X))+ T(F()) = D(B.v)(f(x)) € M.

Therefore, M = M.
Calculating dg(x,v) we get

2
dg(x,v)(vi,v2) = (df (x)vi,X2) X; — <<df(x)v1,X2> % + f1(x) (v, v2>> Xo+w(df(x)vy)+

+(df (x)vi, X2) v+ fi(x)vy.
If dg(x,v)(vi,v2) = 0, then
<df(x)V1,X2>X1 =0= (df(x)v1 ,X2> = 0,
(df(x)vl,X2>v+f1(x)v2 :0:>f1( ) =0=v, =0,

2
- (ﬁ () (o) + (7 (e Xo) 1M )xz T a(df(m) =0 = z(df (vr) =0,

since v,v, € V L R" 4, R" 4 = span{X}, X, } ©U and n(f(x)) € R*9~! = span{X,} ©U. There-
fore f is an immersion. e

(IL.2): Lets suppose that R"~¢ = span{w} @ R" 4! = span{w,X,} @ U, for some unit vector
w € V. In this case, f; = & (f(x),w), where & = ||w||%. Thus,

22

A(f(x)) = AX)PB,v)(w) + 7(f(x)) = fi(x)(— (Bw,v) X+ Bw) + 7(f(x)).

Calling A := — (Bw,v), we have that M C M, since ||Bw||> = ||w]||%. Lets consider f; (x)(AX; +
E)+n(f(x)) €M, B€O(V)andv eV such that Bw = £ and (§,v) = —A, in this way

LX) AXa+6) +7(f(x)) = f1(x) (= (Bw,v) Xa + Bw) + (f (x)) =
= [(X)P(B,v)(w)+ 7(f(x)) = P(B,v)(f(x))-



Rotational Submanifolds in Pseudo-Euclidean Spaces Bruno Mendonga Rey dos Santos

Therefore fi(x)(AX,+&)+m(f(x)) € M.
Calculating dg(x,&,1) we get

dg(x, &, A)(vi,va,r) = [e{df(x)vi,w) & + f1(x)v2] + [e (df (x)vi,w) A + f1(x)r] Xo+
+ w(df(x)vy).

If dg(x,&,A)(vi,va,r) =0, then

{8<df(x)v1,w>§ + fi(x)va =0,
[e(df(x)vi,w) A+ fi(x)r] Xo+ w(df(x)v;) =0,

since &,v, €V and X, w(df(x)v;) € VL.

In this way, (df(x)vi,w) =0 and v, = 0, since & € S(0,¢), v, L S(0,€) and f(x) ¢ R"4~ 1,
thus fi(x)rXs + w(df(x)vy) = 0. If f is an isometric immersion and N is riemannian, then g is an
immersion. e O

Remark 6. Using the calculations above for the case (11.2) of Proposition 2,

(df(x)vi,w) =0,
dg(x7§7ﬂ‘)(vl7v27r):0 g vy =0,

fi()rX, + w(df(x)vy) =0.

Therefore, g is an immersion if. and only if. f.(TN)Nspan{X,} = {0} < R 4N (R"4)" N
fo(TN) = {0}.

Definition 7. The immersion g given at Proposition 2 is called rotational immersion of the rota-
tional submanifold M.

Proof of Corollary 3. Let f: N"~1— R""¢ C IL" be an immersion and M a rotational submanifold
on f with axis R"~9~! ¢ R"~4. The only possibilities we have for R"~9~! and R"~¢ are:

1. R"=4~! and R"~? are both spacelike or both timelike, ie., both have the same index (equals
to £1);

R"9-1 g spacelike and R" 7 is timelike, ie., R”~9-! has index 0 and R" 7 has index 1;
Rl spacelike and R" "7 is lightlike;

R4l lightlike and R" ™7 is timelike;

R"~4-1 and R"1 are both lightlike.

ANl

But all cases above were studied by Proposition 2. U

Remarks 8. By observations 4 and 6, if M is a rotational submanifold in L on f: N — R" 9 and
R"4 is lightlike, then g is an immersion if. and only if. R"™4 1 (R"9)" N ¢,(TN) = {0}, ie., g is
an immersion if, and only if, N is a riemannian manifold with the metric induced by f.
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3. Proof of Theorem 1

In order to prove Theorem 1, we need some additional results. The euclidean versions of these
results can be found in [5].

Lemma 9. Let f: M™ — R} be an isometric immersion and 1 a principal normal of f. Then, for
all X € En(x) and all &, € T;M such that & L 1 and (§,m) = 1, the following formulas are true:

ApX = [In|PX, AsX=0 e AX=X. 3.1)
Let 9 be a distribution in M such that 9 (x) C Ey(x), for all x € M.

1. If 1 is parallel in the normal connexion of f along 9, then V||n||* € T (), where V|1 |*
is the gradient vector of |0 ||*. Furthermore, the following formulas are true:

XY
(Inl*1d—Ay) Vx¥ = %Vlmuz, (32)
(AgVxY.Z) = (x,¥) (Vz&.1), (3.3)
((14-AQ)VxY.Z) == (X,¥) (V5C.m), (3.4)

forall XY €T(9), allZ€T (2+) anall §,§ €T (T+M) such that & L n and (§,n) =
2. If 9 is an umbilical distribution and @ is its mean curvature vector, then

Vxf.Y = fL.VYY +(X,Y)0, VX,Y € T(2), (3.5)

where 6 := f.@ 41 and VY is the orthogonal projection of VxY on 9.
3. With the same hypothesis of (I) and (II),

1
(Iln]>1d An)‘P—EV(HnHZ), (3.6)
(Ag9.2) = (VzE.m). (37)
((ld—Ag) ¢Z>=—<V%C,n>, (3.8)
(Vx9. (IInl*1d—Ay) Z) =0, (3.9)
(Vx9,A:Z) =0, (3.10)
(Vxo,(1d—A;)Z) =0, (3.11)

forallX eT(2), allZeT (%*) and all £,§ € T (T+M) such that & L. e ({,n) =

Proof. Let X € Ey(x), Y € T,M and &,§ € T;"M such that & L 1 and ({,n) = 1. Then

(AnX,Y) = {a(X,Y),n) = ((X,Y)n,n) = [n|*(X,Y),
(AeX.Y) = (a(X,Y),§) = (X,Y)(n,§) =0,
<ACX’Y> = <OC(X,Y),C> = <X’Y> <ﬂa§> = <X7Y>'

Therefore Ay X = [|N|*X, A:X =0e A X =X. o

10
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LetX,Y €T(2),ZcT(2*) and &,{ €T (TfLM) such that & L ne (€,8) = 1.
(D: Knowing that 1) is parallel in the normal connection of f along &, then

X(Inl*) =0 = (X.V[n|*)=0.

Therefore V||n||> € T (24).
Using the Codazzi Equation and equation (3.1), and after some computations, we get that

VxAnZ—AyVxZ=Z(|In[?) X + (IIn[°1d ~Ap) V2X — Ay, X.

Taking the inner product of both sides of the above equality by Y, and after some computations, we
obtain

XY
(2. (P 1a-Ag) Vir) = 5 LV ). (3.12)

We know that, if K € 2, then ((||[n]|*Id—A,) VxY,K) = (VxY,(||n]*1d—Ay) K) = 0, that
is, the only component of (Hn *1d _An) VxY is in &*. Therefore, equation (3.2) follows from
equation (3.12).

We can derive Equation (3.3) making similar computations from Codazzi Equation for Ag, X
and Z and taking the inner product with Y. Equation (3.4) is similar, but we must use X, A¢ and Z
at Codazzi Equation.

(II): If & is an umbilical distribution and ¢ is its mean curvature vector, then

VxfY = £VxY +a(X,Y) = VXY + £VRY +(X,Y)n =
:f*V;(Y_‘_ <X7Y>f*(p+ <X7Y>TI :f*V}}(Y—|—<X,Y> C.e

(III): If & is an umbilical distribution and ¢ is its mean curvature vector, then VxX = Vy X +
ViX e Vi X = ¢, where V4 X and V%X are the orthogonal projections of VyX on 2 and on 2+,
respectively. Thus,

(Inl*1d=Ag) @ = (InlP1d—Ay) Vix = (In]P1d—Ay) (VX + Vix) =

32 1

= (ImlP1a—ay) Vxx %' 290 P

Therefore equation (3.6) is true.

The equations (3.7) and (3.8) follow, respectively, from equations (3.3) and (3.4), using equa-
tion (3.1).

Using (3.6), we can compute that

1
(Vxe. (In|*1d=Ay) Z) = X (V| |%.2) = (9. Vx (In|*1d—45) Z).  (3.13)

Using Codazzi Equation for A, X and Z, using equation (3.6), and after some computations,
we obtain

1 1
(Vx (ImP1d—40) Z.0) = 5XZ (In]1?) = 3X (2. V]In ).

Thus we get the equation (3.9) replacing the last equation in (3.13).

11
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We know that 7 is parallel in the normal connection of f along & and & L n, thus <V§§ ) n> =
— <§ , V§n> =0, that is, Vi & L 7. In this way, using the Codazzi Equation for Ag, X and Z, using
equation (3.7), and after some computations, we obtain

(AcZ,Vx0) = <%i(x,z)§,n>.

By the other side, by Ricci Equation,

(#-(X,2)6.0) = (228, N) - ([Ae AT X, Z) = 0.

Therefore, the equation (3.10) is true.
Similarly, equation (3.11) is obtained using the Codazzi equation for A¢, X and Z, equations
(3.7) and (3.8) and the Ricci Equation for X, Z, { and 1. O

Corollary 10. Let f: M™ — R} be an isometric immersion. If M is a non null Dupin normal of f,
Ey is an umbilical distribution and @ is the mean curvature vector of Ey, then Ey is a spherical
distribution and the equations of Lemma 9 are true.

Proof. Taking & := Ey, the formulas of Lemma 9 are true. To show that Ej; is spherical, we will
show that Vx @(x) € E; (x), for all x € M and all X € Ey(x). But this is equivalent to show that

(Ay = (y,m)1d) Vx(x) =0,
for all x € M and all y € T,"M.
Letx €M and y € T M.

If n(x) is timelike or spacelike.
In this case, ||n(x)|*> # 0 and

Ay —=(ymId=A,_ o +{y,mA_ —(y,n)ld=

Il ]2

= Ay yy-, H(WM) <AL _Id> =Ag +(y,1m) <AL —Id> ;

Inl? Inl? Inl?

where § 1=y — (y,n) W 1lnIfze E#(x), then

((Ay = (v, m)1d) Vx,Z) = (A:Vx0.Z) + (w,n) < <AL —Id) VX(p,Z>.

Inl?
By equations (3.9) e (3.10),
(Vx@,A:Z) =0=(Vxo,(|n|*1d—Ay) Z).

Therefore ((Ay — (y,1)1d) Vx@,Z) =0. It remains to prove that ( (Ay — (y,1n)1d) Vx@(x),Y ) =
0, for all Y € Ey(x). But

((Ay = (w.m)1d) Vip().Y) = (Vx9.AsY) + (y. 1) <Vx<p, (An —Id> Y> Gy,

Il

12
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If n(x) is non null and lightlike.
In this case, there exists a lightlike vector € T;"M such that (n,{) = 1. Thus,

Ay = (W, mId=Ay_ e+ (W,mA—(w,n)1d=Ae + (y.n) (A — 1d),

where & ==y —(y,n){ L 1.
IfZ € Ey(x),

((Ay = (v, M 1d) Vx0,Z) = (A:Vx@,Z) + (w,n) ((Ar —1d)Vx @ (x),Z) .

By the equalities (3.10) e (3.11),
(Vx0,A:Z) =0=(Vx0,(Id—A[)Z).

Therefore ((Ay — (y,1n)1d) Vx@,Z) =0.
By the other side, if Y € Ej (x),

((Ay = () 10) Vx,¥) = (Vx9.AgY) + (y.) (Vxo, (A; ~ 1)Y ) =0,

O

Proposition 11. Let M™ be a riemannian manifold, f: M™ — R} an isometric immersion and 1
its non null principal normal.

1. If dimEy is constant and dim Eyy > 2, then 1) is parallel in the normal connexion of f along
Ey, ie., M is a Dupin normal.
2. If 9 C Ey is a spherical distribution in M whose leafs are open subsets of

(a) g-dimensional ellipsoids given by the intersection S(c,r) N (c+ L) C R}, where L is a
spacelike (q+ 1)-dimensional vector of R};

(b) or g-dimensional hyperboloids given by the intersection S(c,—r) N (c+L) C R}, where
L is a timelike (q+ 1)-dimensional vector of R}';

(¢) or g-dimensional paraboloids given by [£, N (c+L)|+d C R}, where L = span{w} &
V is a lightlike (q+ 1)-dimensional vector of R} (with V spacelike and w lightlike),
¢ LV is lightlike and {(c,w) # 0;

then 1 is parallel in the normal connexion of f along 2.

3. If 1 Dupin normal with multiplicity q, then Ey is an spherical distribution in M™.
In this case, let x € M, N be a leafofEn withx € N and © := f.@+n, where @ is the mean
curvature vector of Ey.

(a) If o(x) is spacelike, then f(N) is an open subset of a g-dimensional ellipsoid in R}!
given by the intersection S(c,r) N (c+ L), where L is a spacelike (q+ 1)-dimensional
subspace of R}'.

(b) If 6(x) is timelike, then f(N) is an open subset of a q-dimensional hyperboloid in R}!
given by the intersection S(c,—r) N (c+ L), where L is a timelike (q+ 1)-dimensional
subspace of R}

13
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(c) If o(x) is lightlike and non null, then f(N) is an open subset of a g-dimensional
paraboloid in R} given by ¢ + {v+ WW‘ Ve V(x)}, where V. C R} is a spacelike
g-dimensional vector subspace and w L'V is lightlike.

Remarks 12. Through the proof made ahead, at the items (I11.1) and (111.2) of Proposition 11,

c=Jx ﬂ r:; an X) = X Span X

are constant in each leaf of Ey.
At the item (111.3), the paraboloids containing the leafs of Ey are given by

V2
p(x)+(=6(x)+L)NZL =p(x)—6(x)+ {v+ @G(x) ‘ Ve V(x)},

Proof of Proposition 11.
Let X” and X" be the orthogonal projections of X € I'(TM) on 2 and &, respectively. Like-
wise, let Vi Y and Vé’{Y be the orthogonal projections of VxY on & and 2+, respectively.

(D: Let 7 :=Eyp, X,Y €' (Ey) and §,§ € T'(T+M) such that & L 1 e ({,n) = 1. By Codazzi
Equation for A¢, X and ¥ and using (3.1), we get

We suppose that X L Y and that ||Y||> = 1, since dimE; > 2. Thus, taking the inner product with
Y of both sides of the above equation, using (3.1) and after some calculations, we can get that
(Vxn,&)=0.

Similarly, by Codazzi Equation for A¢, X and Y, and taking the inner product with ¥, we can
compute that (Vyn,{) =0.

We conclude that Vi1 = 0, cause (Vyn,&) =0and (Vyn,{) =0, forall £, € T (T+M)
suchthat & L nand ({,n)=1.«

(I1.1) and (IL.2): Lets suppose that the leafs of & are open subsets of g-dimensional ellipsoids or
hyperboloids given by S(c,er) N (c+ L) C R}, where

a) or € =1 and L is an (¢ + 1)-dimensional spacelike subspace of R, if L is spacelike;
b) or € = —1 and L is and (¢ + 1)-dimensional timelike subspace of R, if L is timelike.

Let N C M be a leaf (integral submanifold) of 2. Thus, f(N) C S(c,er)N(c+L) C R}, for
some ¢ € R?, r > 0 and some (g+ 1)-dimensional spacelike or timelike vector subspace LI*! C R2.
Lets define the field 6: N — R} by 6(x) := —8% and let X € I'(2), in this way

2 3,2
P =S —elP = - = & ana

_ - X
(0,f.X) = —e<f(xr)2 C,f*X> = —¢er? <—ef(xr)2 C,—sfrz > = —r’e¢({0,0,X) =0,

14
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that is, o is normal to N and ||c||> = £ is constant in N.
Knowing that ¥ C Ey and that & is a spherical distribution, we can get that

VxfY = £VYY + (X)) (foo+7).

By the other side, ¢+ L is totally geodesic if R}, f(N) C S(c,er)N(c+L) C R} and V" is the
Levi-Civita connection of N, then

f

Vi fY = VY —(X,V) el 5 = VY + (X.Y) o
I

Comparing the last two equations, we get that 0 = f.¢ + 1 and 1 = o — f.¢. Thus,

Vxn = Vo - Vxfop = ~Vxel SE - Vi - alxpT—

,
€
= _ﬁf*X—f*VX(p, cause X € 7 C Ey.
Therefore Vi1 = 0. o

(IL.3): Lets suppose that the leafs of & are open subsets of g-dimensional paraboloids given by
[ZN(L+c)]+d C R}, where L =span{w}&V is a (¢+ 1)-dimensional lightlike vector subspace
of R} (with V spacelike and w lightlike), ¢ L V is lightlike and (c,w) # 0.

Let N be aleaf of 2. But £ N (L+c)|+d C span{c,w} BV +d C R} and span{c,w} BV +d
is totally geodesic in R/, thus we can consider f|y : N — span{c,w} OV +d.

But f—d € %, thus f —d is field normal to N. Let {W,Xl,--- ,Xq} be a basis of L such
that {X;,---,X,} is a orthonormal basis of V. In this way, span{c,w} &V = L+ span{c} =
span {w, W, X1, ,Xq}, where {w, W} is a pseudo-orthonormal basis of span{w,c}. We can suppose
that ¢ = bw.

We will show that (f —d,%) = 1. Indeed, f(x) —d € L+c, thus

cl w
£(x) —d = a(x)w + b+ ;xi(x)X,- = <f—d,Z> =1,

and thus w L N.
But f —d and § are orthogonal to N and f(N) C span{c,w} @V +d, then

af\N(X7Y) = <af\N(X7Y)’f_d>%+<af\N(X7Y)7%>(f_d) =

S (AXY) (f-a).

By the other side, w% —=0and Vy(f —d) = f.X. Therefore ap, (X, Y)=—(X,Y) 7.
By the same calculations made at the cases (II.1) and (I1.2), we get that %{ Y = fiVyY +
(X,Y) (f«@+n). Thus

= (Ay-aX.Y)

w w
_E:f*(P‘i’n =N :_E_f*(l’ =
= Vxn = -Vx(fi@) = —f.Vx0 —(Xc0Tn = — £.Vx0.

Therefore Vi1 =0, forall X € Z. o

15
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(IID): If  := Ey, then, by Lemma 9, the equations (3.1) to (3.4) hold.

Affirmation 1: If XY € I'(Ey) and X LY, then VxY € T'(Ey).
IfZeT (Ey),§,Cel (T M), & Lnand (§,n) =1, then

3.2)
(In|P1d—A,) vy 2 Mvunw 0 = [1PVxY =AyVyY: (3.14)

(AVxY,Z) B XHT(V2E M) =0 = AVxY €T (Ey);
((1d—A;) Vxv,z) & —M<V§§,n> =0 = (d—A;)VxY €T (Ey).

By the other side, if W € Ej, then

(AgVxY, W) = (Vx¥,A:W) 20,

(IJd—Ag)VxY,W) = (VxY, (ld—A-)W) &

="0.
Therefore
A;VXY =0 e (Id —Ag)VXY =0, (3.15)

forall £,§ € T'(T+M) such that & L 1 and ({,n) = 1.
Let x € M be a point and W € T;"M be a normal vector. If 17(x) is timelike or spacelike, then

I (x)[* # 0, thus

(3.14),3.15)
Ay—(Ur,n)1d)VyY = A, VY — (urn) (1d—A o | Vyy 1280
(Ay = {w,m)1d) Vx v=(wmpp X tw.n) ( nn2> X
If n(x) is lightlike, then there exists a lightlike vector { € T;-M such that (1(x),{) = 1. In this
case,

(3.14),(3.15)

(Ay—(y,mId) VxY =Ay_ 1y meVxY — (v, ) (Id—A;) VxY 0.

But (Ay — (w,n)1d) VxY =0, for all y, is equivalent to VxY € Ey. v/

Affirmation 2: E;, is umbilical.

We have to show that there exists ¢ € F(E#) such that Vé’{Y = (X,Y) ¢, for any pair of
vector fields X,Y € y(Ey). But the application (X,Y) ~ VLY is bilinear in Ej because, for any
ZeT (Ey), (V}Y,Z) = — (Y,VxZ). Besides that, Affirmation 1 stands that X LY = VY =0.
Then, a known Lemma stands that there exists ¢ such that Vé’(Y = (X,Y) ¢ (see, for example,
Lemma A.9 in [9]).

If we take a unit differentiable vector field X € Ej, then ¢ = V4 X. Therefore ¢ is differen-
tiable. v*

Affirmation 3: Ey is spherical and the equations from Lemma 9 hold.
Just see Corollary 10. v/

Let N C M be a leaf of E;, passing through x. Equation (3.5) stands that f|y: N — R} is an
umbilical isometric immersion and that o is its mean curvature vector. Therefore, knowing the
classifications of umbilical immersions in R}, we have that Remarks 12 hold and that

e or f(N)CS <c( ) IGE )H) N (c(x) +L(x)), if o(x) is spacelike;
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e or f(N)CS <c(x);—m> N (c(x)+L(x)), if o(x) is timelike;

o or f(N) C p(x)+ (—8(x) +L(x)) N.Z = p(x) — &(x) + {v+ P 6 (x): ve V(x)}, if o (x)
is lightlike.

For more details about umbilical immersions of a riemannian manifold in R}, see Chapter 1 of
[9]. O

The following definition was given at [5]

Definition 13. Let & be an umbilical distribution in an riemannian manifold M. The splitting
tensor C of 9 is given by CxZ := —ViX, forall X € T(Z) and all Z € T (2™+).

Remarks 14. Given an orthonormal frame {wy,--- ,wi} of 2, it follows that
k k
CXZ = —V%X = — Z <V§X,Wi> w; = Z <X,Vzw,-> wi.
i=1 i=1

Therefore Cy.xg-Z = f-g-CxZ, for any pair of differentiable applications f,g: M — R, every
X €T(2) and every Z € T (9+). Therefore C is a tensor.

Lemma 15. Let & be an umbilical distribution in M and @ its mean curvature vector. If X,Y € &
and W,Z € D, then:

(Vﬁgcy> W = CyCxW + Cyyy W — 2" (X, W)Y + (X, Y) ((W, o) — V’V’V(p) , (3.16)
(Vi Cx ) Z— (ViCx ) W = CoyxZ — Copx W — 2" (W.2)X — (W,Z],X) 0, (3.17)

where Z"(X,W)Y is the orthogonal projection of #(X,W)Y on 9.
Se 9 C Ey, then

<V§Cy> W = CyCxW + Cyyy W + (X, Y) (A,,W L (W,e) eV ) , (3.18)

(V’;VCX> zZ— (Vgcx> W = Cyy xZ — Cysx W — ([W,Z],X) 9. (3.19)

If  is a principal normal of f: M — RN, 9 C Ey and 2* is a totally geodesic distribution,
then

Vi o =ApW + (W, 0) ¢. (3.20)

Proof. See Lemma 9 of [5], where it was first proved, or Lemma 2.15 of [9]. O

Now we can prove Theorem 1.

Poof of Theorem 1.

Taking Z(x) = Ey(x), the items (I) of Lemma 9 and (III) of Proposition 11 stands that
V(IInl*) € Ey and that Ey is an spherical distribution. Let ¢ be the mean curvature vector of
Eyand 0 := foo+n.

We will prove the following equation:

V26 =(Z,9)0,VZEE,. (3.21)

17
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By Lemmas 9 and 15, we have that
(Ving)=—(a(z.9).&) and Vig=asZ+(Z.)9,

forall Z € Enl and all & L n.
By (3.6), (|n|*1d—Ay) ¢ = 1V||n|?, thus

1
Inll* (9,2) — (4nZ. ) = 3Z () , vZ € Ey. (322)
In this way, using that E# is totally geodesic, we can compute

V26 =(Z,9) f.o+0a(p,Z)+ V.

Thus,
(Vz0,8) = (a(9,2),6) + <V§n,§> =0, V& Lnin T} M.

If n is spacelike or timelike (at some point), then

V20 = (2,0) fig+ (@ (Z,9) +Vin.) i =
1

—(Z,0) f.o+ [(AnZ ®)+ 3 Z(|In|? )] W _

(322) > n

(Z,0) fo+ 01 (0, ETE =(Z,0)(fro+1n)=(Z,90)0

Lets suppose that 7 is lightlike at x € M. In this case, there exists a lightlike vector { € T;*M
such that (n(x),{) = 1. Thus, at x, the following equations hold:
V20 = (Z,9) fop+ (@ (9.2)+VEN.E ) =
—(Z,0)f.0+ [(Ac0,2)— (n,V5¢ )| n =
=(z.9) Lo +11=(9.2)0.

Therefore equation (3.21) holds.

Affirmation 1: 6Zf*X = fiV,X, forall X € Ey and all Z € E#
IfX € U(Ey) and Z,W €T (Ey), then (VzX,W) = — (X, VW) = — (X, VyW) = 0, since E
is totally geodesic. Thus, V7 f.X = f,V,X + o(Z:X] = LVIX. v

Affirmation 2: The distribution L := f.E, & [0] is parallel in R} along M, that is, L = f,E, & [o]
is a constant vector subspace of R}

Indeed, if X € Ej and f.Y + Bo € S+En &S [0], then, using that Ey is spherical and after some
computations, we obtain

Vx (fY +Bo) = £ [Vi¥ =B (lol* +Inl*) X] + [(X,Y) + X (B)] o

By the other side, using (3.21) and Affirmation 1, we get that

Vz(fY +B0) = VoY +[Z2(B)+ B (Z,9)lo

18
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Therefore L is parallel in R} along M. v/

We know that L is constant and f.Ey is spacelike, thus L and o are spacelike at all points of
M, or L and o are timelike at all points of M, or L and ¢ are lightlike at all points of M.

Case 1: Lets suppose that ¢ is spacelike.
In this case, using item (II.1) of Proposition 11 and Remarks 12, it follows that the leafs of
E are g-dimensional ellipsoids in R} given by the intersection S <c(x); m> N (c(x)+L), where

lo(x)]|> e c(x) = f(x)+ % are constant in each leaf of Ej,.

We stand that ¢,7M L L. Indeed, c is constant in the leafs of £y, thus ¢, X =0, for all X € Ey,.
IfZ e E#, then, using (3.21), we get that

(Z,9)

o>~

Thus, (c.Z, f,.X) =0and (c.Z,0) = (fiZ,0) — (Z,9) = (Z,¢) — (Z,¢) = 0. Therefore ¢, TM L L.
Lets consider the manifold N7 := M /~, where ~ is the equivalence relation given by

el = fil —

x~y=xand y are at the same leaf of distribution Ej,.

We know that c(x) = f(x) + % and ||o(x)|* are constant in each leaf of Ej, thus we can
define the applications ¢: N — R and r: N — R by ¢(X) 1= c(x) e r(%) := m, where ¥ is the
equivalence class of x.

Let IT: R} — L be the orthogonal projection. Thus, ITo ¢ and ITo ¢ are constant in M and N
respectively, cause ¢,TM L L. In this way,

o(x)

=cx)———= = X)—r(x G(x)
f(x) =c(x) o] p+h(x)—r(x)

lo )"

where p :=I1(c(x)) and h(%) is the orthogonal projection of &(¥) on L*.

Therefore f(M) is an open subset of the rotational submanifold with axis L on the immersion
f: N — L+ @span{&}, where f (%) := h(x)+ F(¥)§ and & € S(0,1) C L is a fixed vector. It’s
rotational parametrization g: N x S(0,1) — R} is given by g(%,y) := p+h(X) +r(X)y. e

Case 2: Lets suppose that ¢ is timelike.

This case is analogous to the first case. We can prove that f(M) is an open subset of the
rotational submanifold with axis L on the immersion f: N — L-@span{&}, where f(¥) := h(¥) +
F(X)E, & €S(0,—1) C Lis a fixed vector, N := M /~ and ~ is the equivalence relation given at Case
1. The rotational parametrization is g: N x S(0,—1) — R/, given by g(x,y) := p+ h(X) + r(X)y,
S(0,—1) C L.

Case 3: Lets suppose that o is lightlike.
In this case, L = E;; ©span{c} is a lightlike subspace subspace of R}

Affirmation 4: If xo € M and op = G(xp), then o(x) = Tlx)co, for some differentiable function
r:M—R.

If xo € M and {Xi,---,X,} is an orthonormal basis of Ey, (xo), then L = span{Xi,---,X,,0(xo)},

cause L is constant. Thus, o(x) = a (X)X + -+ + @ (X)X, + Tlx)ao and 0 = |lo(x)||> = Y, a?(x).

i

It follows that a; (x) = -+ = a,,(x) = 0 and o (x) = ﬁﬁa

19



Rotational Submanifolds in Pseudo-Euclidean Spaces Bruno Mendonga Rey dos Santos

Let V C L be a spacelike vector subspace and &y be a lightlike vector such that 6y L V and

(0p,6p) = 1. Thus, Tlx) = (o(x), 6p) is differentiable. v/

Lets define &(x) := r(x)6p. Thus, & is a lightlike differentiable field such that & L V and
(0,6) = 1. Besides that, R" = span {6, 5} SU SV = span {6y, 5, } SUSV, where U = (span {0, 5} &V)*
is a nondegenerated vector subspace of L+ C R”.

Lets consider

EW) == Y (0. 600w (3) 4 ) (2.6 0(0) + 5,

where v;(x) = fiei(x) e {e1(x),--- ,e4(x)} is an orthonormal basis of Ey(x). It can be shown that &
is a lightlike differentiable field such that, § L Ey, & € LOspan {6} =LOspan {6y} and (§,0) =1
(see the arguments at Lemma 1.2 of [9]).

By item (II1.3) of Proposition 11 and by Remarks 12,

8 . V|2
709 € p0-+ (000102 = p(o) - 300+ { v+ a0 | vev ),

where p(x) = f(x) + & (x) is constant in each leaf of Ej,.

Let P: R} — V be the orthogonal projection and v(x) = P(f(x) — p(x)). Thus, f(x) — p(x) €
span{G,0} OV and

f@x) = p(x) = 6 (x) +v(x) + Mc(x) = p(x) +r(x) <_60 +w(x) + )l GO) |

where w(x) := %

Affirmation 5: {v.ey,--- ,v.e,} is an orthonormal basis of V.
If X € I'(Ey), then, using that Ej, is spherical and 1 is a Dupin normal, we can get that

Vxo = —|lo|*f.X =0.

Thus, 6, 6 and r are constant in the leafs of Ey. But p is also constant in the leafs of Ej,, therefore
frei = viei+ (vvie)) O <v*e,-,v*ej> = <f*e,~,f*ej> and {v.ey, - ,v*eq} is an orthonormal basis of
V.V

Affirmation 6: V6 = — (Z,9) &, forall Z € Ey.

By (3.21), (Z,9)6 =V,0 =V;2 = -y = 206 Thus, ¢ = — ¥ and Vr = —re.

Therefore, V6 = Vzr6y = Z(r)6y = (Z,Vr) 6y = (Z,—r@) 6o = — (Z,90) 6. v

We know that V C L is a fixed subspace, thus V &span {6y} =V Sspan {6} is also a constant
subspace. If I1: (span{6}&V)® (span{c} DU) — span{G} DV is the projection, then d(ITo
p)(x)X =0, for any X € Ey, because p is constant in the leafs of E,.

If Z € E;, then

d(ITo p)(¥)Z =T1(Vzp(x)) = I [V2(f +&) ()] .
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But, using Affirmation 2 and after some computations, we get that

VofHE) = fiZ z (fuV5e1,8)— (Z,0) (fuen,8)) fuei + (fuen &) V5 1

+ <f*ei76> (f*V%el,6>6—<Z,(p>6

M-

]

I
—

By the other side, if X € I'(Ey), then f.X =v.X + (v,v.X)0o e (f.X,6) = (v,v.X). Thus

. q
Vz(f+8)=fZ— ; [((v,viVzer) —(Z,0) (vviei)) frei+ (vviei) fiV7ei] +

+

1

<V7 V*ei> <V, V*V%ei> o — (Zv (P> G. (323)

q
=1

Besides that, we can easily compute that
[(6)=6; Il(0)=0; M(fX)=v.X; I(f2)=—(Z,¢)v+(Z,0)0;

Therefore, after some calculations, we conclude that IT [V(f + &) (x)] =0, that is, ¢ =II(p(x))
is constant.

Let N := M/ ~, where ~ is the equivalence relation of Case 1, and w: R} — span{c} DU is
given by 7 := Id —I1. Thus,

10 = a+ o)~ 00+ + LD 01 = g ) +760) (~r- vy + L )

where h: N — span {6y} S U and r: N — R are given by h(X) = m(g(x)) and 7(X) = r(x).

Therefore, f(M) is an open subset of the rotational submanifold with axis span{op} S U on
f: N — span {6y, 00} U, where f(x):= h(X) — 7(x)&p. The rotational parametrization g: N X
V — R} is given by

w2
g(x,w) =g+ h(x)+F(X) <—60+w+ | 2” G()> .o
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