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Coulomb phase stability and quark confinement
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Quantum Chromodynamics smoothly interpolates from an asymptotic freedom regime to a con-
finement regime. The transition is tracked by the instability of Coulomb phase in heavy quark
backgrounds for intermediate values of the coupling constant. The quark-antiquark Coulomb
phase holding at short distances leads at large distances to another phase driven by thick string-
like configurations. The critical distance where the transition occurs has a non-pertubative depen-
dence on the coupling constant. The phenomenon can be derived in a straightforward way from
first principles which opens a window to a new analytic approach to quark confinement.
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1. Introduction

The analytic approach to QCD from first principles has been very successful in the two extreme
coupling constant regimes. At weak coupling (α� 1) perturbation theory shows that the β function
is negative which points out the asymptotic freedom behaviour of the theory at short distances.
On the other extreme strong coupling expansion also shows that for large values of the coupling
constant (α � 1) the theory is confining. However, to show that both behaviours arise in the
same theory one needs to prove that there is no phase transition at intermediate coupling constant
regimes. Otherwise, we will have two different theories with different ultraviolet and infrared
behaviours. The absence of critical phenomena for non-vanishing values of the coupling constant
has only been shown by numerical simulations on the lattice. The analytic proof of this fact has
remained elusive for decades and still is one of the challenging theoretical questions in QCD.
The only analytic tools which have explored the intermediate regime of coupling constants are
large N expansions and gauge-gravity dualities raised by AdS/CFT correspondence. However,
the behaviour of real QCD at the intermediate regime of coupling constant still remains as an
open problem from an analytic perspective. On the other hand the intermediate regime is very
interesting from a phenomenological viewpoint. The physics of meson and baryon resonances
provides a rich family of phenomena which require the precise understanding of the behaviour of
QCD at intermediate energies.

Recently, a new approach due to Gribov [1][2] has emerged with new insights coming from
QCD instability in heavy quarks backgrounds for large values of the effective α coupling constant.
The instability would imply a vacuum decay on light quark-antiquark pairs [3][4]. A further anal-
ysis based on Dyson-Schwinger equations for the light quark Green functions lead to the existence
of a critical value of the strong coupling αG = 3π

4 (1−
√

2/3) beyond which the theory becomes
unstable [3]-[6]. The analysis of the stability of Euclidean functional integral in one heavy quark
background points out the existence of similar unstabilities for values of the coupling constant
larger than critical value αc =

√
2 [7][8]. A similar critical value was found in earlier analyses

[9]-[20] of Yang-Mills equations in a Coulomb background. However, one quark backgrounds do
not respect the chromodynamics Gauss law and are unphysical. A more realistic setup is a quark-
antiquark background which can correspond to a meson background matching chromodynamics
Gauss law and all other physical constraints. In this note we analyse the stability properties of the
Coulomb regime in this background finding some surprising features.

2. Coulomb phase in a heavy quark-antiquark background

Let us consider a pair of heavy static quark-antiquark. The Euclidean functional integral de-
fined the Euclidean action

SY M(A) =− 1
2g2

∫
d4x trFµνFµν −2i

∫
dx0 tr T3 [A0(~x+L~e3,x0)−A0(~x−L~e3,x0)] , (2.1)

is dominated by the imaginary Coulomb background solution of Euclidean Yang-Mills equations

A0(~x) =
iαT3

|~x−L~e3|
− iαT3

|~x+L~e3|
, ~A = 0. (2.2)
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where α = g2

4π
, 2L is the distance between the two quarks and T3 is the third Gell-Mann matrix

(T2
3 = −1/2). Instabilities can arise in second order fluctuations from non-abelian static magnetic

field perturbations of the form

~τ(x) =
~x×~e3

ρ
3
2

φ(ρ,z)T12, τ0 = 0, (2.3)

where T12 is any normalized linear combination of the first two components of Gell-Mann matrices
(T2

12 =−1/2) and φ(ρ,z) satisfies the eigenvalue equation

 ∂ 2

∂ ρ2 +
∂ 2

∂ z2 −
3

4ρ2 +

(
α√

ρ2 +(z−L)2
− α√

ρ2 +(z+L)2

)2
φ(ρ,z) = λ

2
φ(ρ,z) (2.4)

in cylindric coordinates.
The singularities associated to point-like structure of the heavy quarks need to be renormalized.

This can be achieved in terms of boundary conditions which guarantee the selfadjointess of the
second order differential operator involved in second order fluctuations (2.4).

The boundary conditions can be given in terms of zero modes around the singularities of this
operator (2.4) which are given by

ψ
±
> (ρ,z) = ρ

3
2
(
ρ

2 +(z−L)2)− 3
4±

ν

2 (2.5)

and
ψ
±
< (ρ,z) = ρ

3
2
(
ρ

2 +(z+L)2)− 3
4±

ν

2 , (2.6)

where ν =
√

9
4 −α2. Both solutions are normalizable for α2 > 5

4 and ν becomes imaginary for

α2 > 9
4 . Thus, for α2 < 5

4 the operator is essentially selfadjoint and has a unique selfadjoint ex-
tension with positive spectrum. In that regime the Coulomb phase is stable. For α2 > 5

4 general
solutions can depends on a dimensionfull parameter Λ

ψ>(ρ,z) =

(
ρ√

ρ2 +(z−L)2

) 3
2
[(

Λ

√
ρ2 +(z−L)2

)ν

−
(

Λ

√
ρ2 +(z−L)2

)−ν
]
, (2.7)

ψ<(ρ,z) =

(
ρ√

ρ2 +(z+L)2

) 3
2
[(

Λ

√
ρ2 +(z+L)2

)ν

−
(

Λ

√
ρ2 +(z+L)2

)−ν
]

(2.8)

which introduces an anomalous breaking of conformal symmetry.
In such a case there is a family of boundary conditions for the operator involved in second

order fluctuations φ parametrized by Λ, which make (2.4) selfadjoint and are given by

lim
z→L

(
φ
′
ψ<−φ ψ

′
<

)
= 0, lim

z→−L

(
φ
′
ψ>−φ ψ

′
>

)
= 0, (2.9)

where φ ′ and ψ ′ denote the normal derivatives.
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However, there is a difference between the the strong coupling case α2 > 9
4 and the intermedi-

ate coupling case 5
4 < α2 < 9

4 . In fact, the situation is reminiscent of the a single quark background
where in the strong coupling regime there is an infinity of negative modes which lead to a strong
instability of Coulomb phase, whereas in the intermediate regime only one negative mode points
out a mild instability of that phase [7, 8].

3. Coulomb phase in the intermediate coupling constant regime

Unlike in the one-quark background setup the spectral problem of the quark-antiquark back-
ground cannot be solved analytically. In a neighbourghood of each quark ρ ' 0 and z'±L a good
approximation to the spectral problem for negative eigenvalues −λ 2 reduces to ∂ 2

∂ ρ2 +
∂ 2

∂ w2 −
3

4ρ2 +

(
α√

ρ2 +w2
− α

2L

)2
φ(ρ,w) = λ

2
φ(ρ,w) (3.1)

where w = z∓L. In the intermediate regime of coupling constants 5
4 < α2 < 9

4 , for α < 2Lλ there
is only one real solution matching the boundary conditions. It can be given in terms of Whittaker
function

φ(ρ,w) =
ρ3/2

ρ2 +w2W

(
− α2
√

4L2λ 2−α2
,ν ,

√
4L2λ 2−α2

L

√
ρ2 +w2

)
, (3.2)

From the asymptotic expansion of Whittaker function near the origin ρ ' 0,w' 0 it is easy to show
that boundary conditions reduce to

Γ [1−2ν ]

Γ

[
1
2 −ν + α2√

4L2λ 2−α2

] − Γ [1+2ν ]

Γ

[
1
2 +ν + α2√

4L2λ 2−α2

] ( LΛ√
4L2λ 2−α2

)2ν

= 0 (3.3)

Notice that there is a singularity at ν = 1
2 , i.e. α2 = 2.

We shall restrict ourselves to the special intermediate regime 2 < α2 < 9
4 . For the rest of the

intermediate regime 5
4 <α2 < 2 the boundary conditions ψ

+
> , ψ

+
< in (2.5), (2.6) preserve conformal

invariance and do not displays unstable modes.
The negative eigenvalue −λ 2 obtained from that condition increases as the distance 2L be-

tween the two quarks decreases suggesting a possible vanishing for a finite critical distance L = Lc.
The exact solution is very close to the approximate solution (3.3) (see Figure 1).

To find out the critical distance Lc where the unstable modes disappear we have to go beyond
α = 2Lλ . For α > 2Lλ the solution (3.2) becomes complex and we get two independent real
solutions matching the physical boundary conditions. This is in agreement with the exact solution
of the negative eigenvalue problem, where there are two different solutions: φs which is parity
symmetric and φa which is antisymmetric. The corresponding eigenvalues are slightly different,
being the lowest the symmetric mode which is leading the instability. The approximate real solution
corresponding to the exact symmetric solution is

φs(ρ,w)'
ρ3/2

ρ2 +w2 Im

[
W

(
− α2
√

4L2λ 2−α2
,ν ,

√
4L2λ 2−α2

L

√
ρ2 +w2

)]
(3.4)
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Figure 1: Behaviour of negative unstable modes of gluon fluctuations with the size 2L of a heavy quark-antiquark pair
at α = 1.495 in the special intermediate coupling regime. Red dots are exact values for the symmetric mode whereas
the squares are the eigenvalues of the antisymmetric unstable modes. The blue curve represents the approximate values
obtained by the analytic formula (3.1). Both results point out the existence of a critical size 2Lc in this intermediate
coupling regime where the unstable modes become stable.

with the boundary condition

Im

 Γ [1−2ν ]

Γ

[
1
2 −ν + α2√

4L2λ 2−α2

] − Γ [1+2ν ]

Γ

[
1
2 +ν + α2√

4L2λ 2−α2

] ( LΛ√
4L2λ 2−α2

)2ν

= 0 (3.5)

and the other one corresponding to the antisymmetric solutions is

φa(ρ,w)'
ρ3/2

ρ2 +w2 Re

[
W

(
− α2
√

4L2λ 2−α2
,ν ,

√
4L2λ 2−α2

L

√
ρ2 +w2

)]
(3.6)

1.42 1.44 1.46 1.48 1.50
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Figure 2: α-dependence in the intermediate regime of the critical heavy meson size 2Lc where negative unstable modes
of gluon fluctuations become stable. The symmetric and antisymmetric modes are so overlapped that their difference
cannot be appreciated in the plot, but the symmetric mode is always lower that the antisymmetric one
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Figure 3: Density plot of the symmetric unstable mode of gluon fluctuations in a heavy quark-antiquark background.
The configuration has a shape of a thick string connecting the two quarks, which is pointing to a confinement background.

with the boundary condition

Re

 Γ [1−2ν ]

Γ

[
1
2 −ν + α2√

4L2λ 2−α2

] − Γ [1+2ν ]

Γ

[
1
2 +ν + α2√

4L2λ 2−α2

] ( LΛ√
4L2λ 2−α2

)2ν

= 0, (3.7)

were we have used asymptotic expansion for the Whittaker near the origin.
There are also two critical distances which correspond to the distances where the symmetric

and antisymmetric modes become stable. They can be obtained also from the approximate sym-
metric solution

φs(ρ,w) =
ρ3/2

ρ2 +w2 Im
[
W
(

iα,ν ,
iα
L

√
ρ2 +w2

)]
(3.8)

and the approximate antisymmetric solution

φa(ρ,w) =
ρ3/2

ρ2 +w2 Re
[
W
(

iα,ν , i
α

L

√
ρ2 +w2

)]
, (3.9)

respectively. The corresponding critical distances are

L̃c =
α

Λ

Γ[1−2ν ]

Γ[1+2ν ]

Im
[

i
1
2 +ν

Γ[ 1
2−iα−ν]

]
Im
[

i
1
2 (−i)ν

Γ[ 1
2−iα+ν]

]


1
2ν

(3.10)

and

L̃′c =
α

Λ

Γ[1−2ν ]

Γ[1+2ν ]

Re
[

i
1
2 +ν

Γ[ 1
2−iα−ν]

]
Re
[

i
1
2 (−i)ν

Γ[ 1
2−iα+ν]

]


1
2ν

, (3.11)
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Figure 4: Density plot of the antisymmetric unstable mode of gluon fluctuations in a heavy quark-antiquark back-
ground. The configurations does not shows any trace of string connecting the quarks.

respectively. Notice that L̃c < L̃′c.
The exact results are very close to the above approximate values. There exists a critical dis-

tance Lc such that the Coulomb phase becomes unstable for quark-antiquark pairs with separations
larger than 2Lc. At larger distances there is a symmetric unstable mode and for L > L′c also an
antisymmetric one. The critical size Lc can reach arbitrary large values as α →

√
2 (see Figure 2)

in agreement with the absence of unstable modes for α <
√

2.
The profiles of those unstable solutions are displayed in Figure 3 and Figure 4. The symmetric

mode, which is the most unstable mode (see Figure 3), exhibits a prominent thick string connecting
the two quarks which points out to a picture of QCD where confinement would be driven by thick
strings rather than by fundamental strings [21, 22].

In summary, the behaviour of these negative modes implies that for intermediate values of the
coupling constant the Coulomb phase is only stable on a heavy meson background for small sizes
L < Lc. Whereas, for larger sizes (L > Lc) the presence of negative modes leads to inconsistency
of the background field expansion around Coulomb potentials.

Whether or not the instability means that at larger distances the theory is confining is unclear
and remains as an open problem. Usually, the unstable modes get stabilized by higher order fluctu-
ation selfinteractions. In that case the non-perturbative contribution of these modes would give rise
to a linearly growing effective potential which would provide an evidence for confinement. But in
this case the peculiar form of the unstable modes (2.3) implies that

[τµ ,τν ] = 0,

which means that the quadratic approximation is exact, and stability cannot be restored by higher
order terms in the usual way.

7
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Figure 5: Behaviour of one of the infinite negative unstable modes of gluon fluctuations −λ 2 with heavy meson size
2L at α = 1.6 in the strong coupling regime. Red dots are exact values for the symmetric mode whereas the squares
are the eigenvalues of antisymmetric unstable modes. The blue curve represents the approximate values obtained by
the analytic formula (3.1). Even if the mode becomes stable below a critical size, there are other unstable modes, not
displayed on the picture, with larger negative values

4. Conclusions

In the strong coupling regime α > 3
2 there is an infinity of negative modes and even if each

one becomes positive for close enough quark-antiquark pairs, there are always other modes that still
remain negative for any distance between the quarks. In fact, in this case conformal symmetry is
only partially broken, because of the periodicity of the boundary conditions (2.9) under the change
Λ→ Λeπi/ν , the theory remains covariant under this discrete group of scale transformations Z. By
the same reason the structure of the unstable modes follows the same periodic pattern as in the
Efimov effect λ 2

n+1(e
−iπ/νL) = λ 2

n (L)e2πi/ν [8]. Thus, the Coulomb phase is always unstable in
this regime for any size of the meson, which is compatible with the fact that the theory is confining
in the strong coupling expansion.

The instabilities dues to negative modes of gluon fluctuations on a heavy meson background
just mean that the expansion around a Coulomb background is not consistent for intermediate
values of the coupling constant at large distances. In fact, these backgrounds are saddle points
of the Euclidean functional integral and one can try to get a damping integrand just by changing
the integration contour. However, the expansion is pathological for any choice of the integration
contour, reflecting the fact that Coulomb phase does not hold at large distances for intermediate
values of the coupling constant.

However, the functional integral is well defined. The pathology only means that the Coulomb
saddle point is not relevant. The real physical problem is that the unstable modes do not point out
to gauge field backgrounds where to find relevant saddle point configurations.

The results are surprising and support the Gribov picture of confinement. Even the critical
value of the strong coupling constant αc =

√
2 on the presence of heavy quarks is of the same order

of magnitude as the Gribov’s critical value αG for light quarks. The critical value αc is slightly
beyond the perturbative regime. This is due to the helicity one character of gluon fluctuations.
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If we consider light quarks in the same background the stability requirements provide a smaller
critical value αF =

√
3/2, closer to the Gribov critical value and inside the perturbative regime.

The transition from the asymptotic regime to a presumible confining regime for intermediate
values of the strong coupling constant is a strong indication that QCD smoothly interpolates from
an asymptotic freedom regime to a confinement regime.

The mere existence of a finite region of couplings α ∈ [
√

2, 3
2 ], where the transition occurs for

a given value of the α coupling, just by changing the separation between the two quarks, implies
that the transition between the two regimes does not involves a critical phase transition. There is
not a sharp separation at a given α coupling between two different regimes. There is a simple
crossover. This is the first indication derived from first principles that QCD does not undergo a
phase transition at intermediate energy scales. It will be interesting to analyse the effect of a finite
temperature on QCD on the light of the new picture.
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