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1. Introduction

The anomalous magnetic moments of the electron and of the muon have been experimentally
measured with very high accuracies. The latest experiments of the Penning-trap type conducted
at Harvard [1, 2] have improved by more than an order of magnitude the relative precision on the
value of the magnetic moment ge of the electron as compared to the value obtained previously
[3] by the group of H.G. Dehmelt in Seattle. The present best determination [2] of the electron’s
magnetic moment at the level of 0.28ppt gives the anomalous magnetic moment [ae ≡ (ge −2)/2]

aexp
e = 1159652180.73(0.28) ·10−12, (1.1)

at an impressive relative precision of 0.24ppb.

The finite lifetime of the muon, τµ ∼ 2 · 10−6 s, precludes the use of similar experimental
techniques in order to measure its magnetic moment. Instead, muons, produced from the decay
of pions obtained by sending a proton beam on a target, are collected in a storage ring where they
are accelerated before decaying into electrons and neutrinos. Successive experiments of this type,
conducted over several decades, first at CERN, from the beginning of the sixties to the middle
of the seventies, and more recently at BNL, have brought the relative precision on the anomalous
magnetic moment of the muon below the ppm level. The combination of the results obtained by
the E821 experiment at BNL [4] leads to the value

aexp
µ = 11659208.9(6.3) ·10−10 (1.2)

which shows a relative precision of 0.54ppm, the total error being dominated by statistics [±5.4 ·
10−10, vs. ±3.3 ·10−10 for systematics].

As far as the τ lepton is concerned, the experimental situation is unfortunately far from being
close to the one of the electron, or even of the muon. The very short lifetime, ττ ∼ 2.9 ·10−13 s, of
the τ , which is heavy enough to decay into hadrons, precludes the implementation of the experi-
mental approach used for the muon. Only rather crude bounds [at 95% confidence level] have been
obtained by the LEP and LEP2 experiments:

−0.052 < aexp
τ <+0.058 [5],−0.068 < aexp

τ <+0.065 [6],−0.052 < aexp
τ <+0.013 [7]. (1.3)

I will therefore only discuss the cases of the electron and of the muon in the sequel, and refer to
Refs. [8] and [9] for the theory of aτ .

The experimental measurements of the anomalous magnetic moments of the electron and of
the muon constitute quite impressive achievements, and the natural question that arises is whether
theoretical predictions are able to match this precision. At stake is the possibility for an indirect
evidence of physics beyond the standard model (for a survey, see Ref. [10]), should the comparison
between the experimental results and the theoretical calculations reveal a sufficiently significant and
robust discrepancy. The present contribution reviews the status of the theoretical determinations of
ae and of aµ within the standard model.
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2. General aspects

The response of a charged lepton ℓ−, ℓ = e,µ,τ , to an external electromagnetic field is given
by the matrix element

⟨ℓ−; p′|Jρ(0)|ℓ−; p⟩ ≡ u(p′)Γ(ℓ)
ρ (p′, p)u(p) (2.1)

of the conserved electric current Jρ(x). In the most general situation, where neither invariance
under parity nor under time reversal is assumed, the matrix element Γ(ℓ)

ρ (p′, p) decomposes into
four independent Lorentz invariant form factors Fi(k2), i = 1,2,3,4, with kµ ≡ (p′− p)µ [most of
the time, the superscript (ℓ) will be omitted]:

Γρ(p′, p) = F1(k2)γρ +
i

2mℓ
F2(k2)σρνkν −F3(k2)γ5σρνkν +F4(k2)(k2γρ −2mℓkρ)γ5. (2.2)

Restricting one’s attention to static quantities, k → 0, the Dirac form factor is normalized by the
electric charge, F1(0) = 1 in the normalization chosen here for the electric current, while the Pauli
form factor describes the anomalous magnetic moment, F2(0) = aℓ ≡ 1

2 (gℓ−2), i.e. half the devia-
tion of the gyromagnetic factor gℓ from its tree-level value gtree

ℓ = 2 in the standard model. The two
remaining form factors describe, in the same static limit, an electric dipole moment dℓ = eℓF3(0),
and an axial radius, the so-called anapole moment F4(0), sensitive to the gradient of the external
field. A more complete discussion and corresponding references can be found in Ref. [11].

Bofore entering the detailed account of the various contributions of the standard model degrees
of freedom to the anomalous magnetic moment aℓ, it is useful to keep in mind a few general and
simple, but nevertheless useful, remarks and observations:

• Within the framework of a renormalizable quantum field theory, F2(k2), F3(k2), and F4(k2)

can only arise through loop corrections. These loop contributions have to be finite and cal-
culable.

• The anomalous magnetic moments aℓ are dimensionless. Therefore, contributions to aℓ aris-
ing from loops containing only photons and leptons of type ℓ are universal.

• Massive degrees of freedom with M ≫ mℓ contribute in general to aℓ through powers of
m2
ℓ/M2 times logarithms (decoupling).

• Light degrees of freedom with m ≪ mℓ give rise to logarithmic contributions to aℓ, e.g.
ln(m2

ℓ/m2). Note that π2 ln(mµ/me)∼ 50.

It has become common practice to decompose the various standard model contributions to aℓ into
parts arising from quantum electrodynamics, from the strong interactions, and finally from the
weak interactions,

aSM
ℓ = aQED

ℓ +ahad
ℓ +aweak

ℓ . (2.3)

I will adopt this decomposition, and discuss the three contributions in turn.

3



P
o
S
(
P
h
o
t
o
n
 
2
0
1
3
)
0
4
0

SM calculations of lepton g−2 Marc Knecht

3. Contributions from quantum electrodynamics

The quantum electrodynamics (QED) contribution, aQED
ℓ , to the anomalous magnetic moment

of a charged lepton is defined as the sum of the contributions that arise from loops made only
of virtual photons and leptons. Due to the smallness of the fine structure constant, a perturbative
approach is appropriate:

aQED
ℓ = ∑

n≥1
A(2n)

1

(α
π

)n
+ ∑

n≥2
A(2n)

2 (mℓ/mℓ′)
(α

π

)n
+ ∑

n≥3
A(2n)

3 (mℓ/mℓ′ ,mℓ/mℓ′′)
(α

π

)n
. (3.1)

The first sum accounts for the universal, mass-independent, contributions, that start at the one-
loop level, and that correspond to the case where the lepton in the loop is identical to the external
lepton (i.e. one-flavour QED). The remaining contributions describe multi-flavour QED. Mass-
dependent contributions involving a single ratio of lepton masses start only at the two-loop level,
and are described by the coefficients A(2n)

2 (mℓ/mℓ′). Finally, from the three-loop level onwards,
one can also have contributions involving two ratios of lepton masses, which are accounted for by
the coefficients A(2n)

3 (mℓ/mℓ′ ,mℓ/mℓ′′). In the standard model with only three generic families, this
exhausts all the possibilities.

The lowest-order contribution A(2)
1 arising from the vertex correction at one-loop is known

since long time [12], and reads

A(2)
1 =

1
2
. (3.2)

At next-to-leading order, there are seven graphs contributing to A(4)
1 (see Fig. 2 in Ref. [11]), and

the corresponding expression, also known analytically, was first given correctly in Refs. [13] and
[14]:

A(4)
1 =

197
144

+

(
1
2
−3ln2

)
ζ (2)+

3
4

ζ (3) =−0.328478965579193... (3.3)

with ζ (p) =
∞

∑
n=1

1/np, ζ (2) = π2/6. At this same order, there also appears a mass-dependent

contribution. It arises from the insertion of a vacuum polarization loop coming from the lepton ℓ′

into the photon propagator of the one-loop vertex correction of the lepton ℓ. Its expression reads

A(4)
2 (mℓ/mℓ′) =

1
3

∫ ∞

4m2
ℓ′

ds

√
1−

4m2
ℓ′

s
s+2m2

ℓ′

s2

∫ 1

0
dx

x2(1− x)
x2 +(1− x) s

m2
ℓ

=
1
3

∫ ∞

4m2
ℓ′

ds
s

K(s)Rℓ′+ℓ′−(s), (3.4)

and is equivalent to the formulas given in Refs. [15] and [16] after changes of the integration
variables. The function K(s) in the second expression is defined by the second integral in the first
expression, and Rℓ′+ℓ′−(s) stands for the ratio σ(ℓ+ℓ− → ℓ′+ℓ′−)/σpt(s), with σ pt(s) = 4πα2/(3s),
at tree level. The integrations in Eq. (3.4) can be done explicitly in order to obtain analytical
expressions, which were given in Ref. [17], for mℓ/mℓ′ > 1 and, in a more compact way, in Refs.
[18] and [19] for the general case. In practice, one may also use series expansions [20]-[23], the
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first terms of which read

A(4)
2 (mℓ/mℓ′) =

1
3

ln
(

mℓ

mℓ′

)
− 25

36
+

π2

4
mℓ′

mℓ
−4

(
mℓ′

mℓ

)2

ln
(

mℓ

mℓ′

)
+3

(
mℓ′

mℓ

)2

+O

[(
mℓ′

mℓ

)3
]
,

(3.5)
for mℓ ≫ mℓ′ , and

A(4)
2 (mℓ/mℓ′) =

1
45

(
mℓ

mℓ′

)2

+
1

70

(
mℓ

mℓ′

)4

ln
(

mℓ

mℓ′

)
+

9
19600

(
mℓ

mℓ′

)4

+O

[(
mℓ

mℓ′

)3

ln
(

mℓ

mℓ′

)]
,

(3.6)
for mℓ′ ≫ mℓ. These expansions display the general properties discussed at the end of Sec. 2.
In principle, they can be carried out to any desired order, the only limitation in precision coming
from the accuracy of our knowledge of the mass ratios they involve. Using the values given by the
CODATA compilation [24]

mµ/me = 206.7682843(52), mµ/mτ = 5.94649(54) ·10−2, me/mτ = 2.87592(26) ·10−4, (3.7)

one finds [25][26]

A(4)
2 (me/mµ) = 5.19738667(26) ·10−7, A(4)

2 (me/mτ) = 1.83798(34) ·10−9,

A(4)
2 (mµ/me) = 1.0942583120(83), A(4)

2 (mµ/mτ) = 7.8079(15) ·10−5. (3.8)

At order O(α3), there are 72 diagrams to consider. A quite impressive series of computa-
tional achievements [27]-[37] led to the following analytical expression for the sixth-order mass-
independent contribution

A(6)
1 =

87
72

π2ζ (3)− 215
24

ζ (5)+
100
3

[(
a4 +

1
24

ln4 2
)
− 1

24
π2 ln2 2

]
− 239

2160
π4

+
139
18

ζ (3)− 298
9

π2 ln2+
17101

810
π2 +

28259
5184

[ap =
∞

∑
1

1/(2nnp)]

= 1.181241456 . . . (3.9)

The mass-dependent contributions at sixth order are also known analytically and were obtained in
Refs. [38] and [39]. The corresponding numerical values read [25][26]:

A(6)
2 (me/mµ) =−7.37394155(27) ·10−6, A(6)

2 (me/mτ) =−6.5830(11) ·10−8,

A(6)
2 (mµ/me) = 22.86838004(23), A(6)

2 (mµ/mτ) = 36.070(13) ·10−5, (3.10)

and [23, 25, 26]

A(6)
3 (me/mµ ,me/mτ) = 0.1909(1) ·10−12, A(6)

3 (mµ/me,mµ/mτ) = 5.2776(11) ·10−4. (3.11)

The eighth-order contribution consists of 891 Feynman diagrams. Its value is known only
from a numerical integration of the corresponding Feynman-parametrized loop integrals. The latest
result of the mass-independent part reads [25]

A(8)
1 =−1.9106(20). (3.12)
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It is interesting to follow the evolution of this numerical determination during time, as displayed in
Eq. (9) of Ref. [40]. The discussion following it shows that these numerical evaluations present
tough difficulties that in some cases have led to erroneous values. Having such delicate calcula-
tions done by a single group can be potentially problematic. An independent evaluation of these
contribution through different techniques and by a different group [41] can thus only be welcome.

The contribution at order O(α5) to aℓ arises from 12672 diagrams. Its numerical evaluation
was completed only recently [40][42]-[50][25] The mass-independent part amounts to

A(10)
1 = 9.168(571), (3.13)

whereas the values of the relevant mass-dependent contributions are

A(10)
2 (me/mµ) =−0.00382(39), (3.14)

and

A(10)
2 (mµ/me) = 742.18(87), A(10)

2 (mµ/mτ) =−0.068(5), A(10)
3 (mµ/me,mµ/mτ) = 2.011(10).

(3.15)
Summing up all the contributions at a given order, one arrives at the perturbative expansion

aQED
ℓ =C(2)

ℓ

(α
π

)
+C(4)

ℓ

(α
π

)2
+C(6)

ℓ

(α
π

)3
+C(8)

ℓ

(α
π

)4
+C(10)

ℓ

(α
π

)5
+ . . . (3.16)

with the values[25][26] of the coefficients C(n)
ℓ gathered in the following table:

ℓ= e ℓ= µ
C(2)
ℓ 0.5 0.5

C(4)
ℓ −0.32847844400 0.765857425(17)

C(6)
ℓ 1.181234017 24.05050996(32)

C(8)
ℓ −1.9144(35) 130.8796(63)

C(10)
ℓ 9.16(58) 753.29(1.04)

Since (α/π)2 ∼ 6.76 ·10−14, we see that the tenth-order QED contributions are relevant at the level
of the experimental precision on ae and on aµ , in the latter case because of the large value of the
coefficients C(10)

µ (cf. the end of Sec. 2).

4. Contributions from quantum chromodynamics

Formally speaking, the contributions from the strong interactions arise from loops involv-
ing, in addition to the leptons and photon, also the quarks and gluons as described by quantum
chromodynamics (QCD). Unfortunately, the kinematical regime relevant for static quantities, such
as the anomalous magnetic moments of the leptons, corresponds to large distances, where a per-
turbative approach to the QCD effects is not useful. The first QCD contribution arises at order
O(α2), through a hadronic vacuum polarization insertion into the one-loop vertex diagram, see
Fig. 1. This contribution, aHVP-LO

ℓ , is evaluated using the second expression in Eq. (3.4), with
the same function K(s), but with Rℓ′+ℓ′−(s) replaced by the hadronic ratio Rhad(s) [51][52][53] [and

6
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Figure 1: Lowest-order hadronic corrections to aℓ (left). The shaded blob represents the hadronic vacuum
polarization function. The contribution on the right, although of higher order, is also included in aHVP-LO

ℓ .

the range of integration starts at 4M2
π±], that can be extracted from available data for the cross-

section of e+e− → hadrons. Note that K(s) is positive, so that aHVP-LO
ℓ is positive. Furthermore,

K(s)∼ m2
ℓ/(3s) as s → ∞, so that the low-energy region dominates. Two recent determinations in

the case of the muon give very close results

aHVP-LO
µ = 692.3(4.2) ·10−12 [54], aHVP-LO

µ = 694.9(4.3) ·10−12 [55]. (4.1)

For more details, I refer to the references already quoted, ot to [56]-[59], and to [60][61] for differ-
ent approaches.

At order O(α3), there are further hadronic corrections[62][63], shown in Fig. 2, which involve
the same R ratio, but convoluted with a different function K(2)(s), which is no longer positive
definite. One finds for this NLO hadronic vacuum polarization contribution [55]

aHVP-NLO
µ =−9.84(7) ·10−12, (4.2)

At order O(α3), there is also another hadronic contribution arising from the diagram in Fig.
3. This hadronic (virtual) light-by-light scattering contribution cannot be related to available data,
and has thus to be evaluated by other means. For a critical overview, see [64]. Ref. [65] provides a
recent update. Related issues are discussed in [66]-[68] For reference, I quote the “best estimate”
of Ref. [69]

aHLxL
µ = 10.5(2.6) ·10−10, (4.3)

and the somewhat more conservative value [70]

aHLxL
µ = 11.5(4.0) ·10−10. (4.4)

In the case of the electron, these hadronic contributions are suppressed by approximatively a
factor (me/mµ)

2 as compared to the muon, and the most recent values are [72]

aHVP-LO
e = 1.866(11) ·10−12, aHVP-NLO

e =−0.2234(14) ·10−12, (4.5)

and
aHLxL

e = 0.035(10) ·10−12 [71], aHLxL
e = 0.039(13) ·10−12 [70]. (4.6)

Figure 2: Representative Feynman graphs for the higher-order hadronic corrections aHVP-NLO
ℓ .
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Figure 3: Hadronic Light-by-Light contribution to aℓ.

5. Contributions from weak interactions

At the one-loop level, contributions from the weak interactions arise through the vertex cor-
rections due to the exchange of a virtual Z0 gauge boson or a virtual scalar boson, and from the
γ −W+−W− vertex, with the W± lines connected to the external lepton lines through two tree-
level charged-current vertices. These one-loop contributions have been worked out more than forty
years ago by several groups [73]-[77], and the result reads

aweak(1)
ℓ =

GF√
2

m2
ℓ

8π3

[
5
3
+

1
3
(
1−4s2

w
)2

+O

(
m2
ℓ

M2
Z

ln
M2

Z

m2
ℓ

)
+O

(
m2
ℓ

M2
H

ln
M2

H

m2
ℓ

)]
= 19.48 ·10−10. (5.1)

At the two-loop level, one conveniently distinguishes between contributions without internal
fermion loops (called bosonic), and those containing internal fermion loops (called fermionic).
The former were evaluated in Refs. [78]-[80], and the latter were treated in Refs. [81]-[84] A
recent reanalysis [85] gives, for the sum of one-loop and two-loop corrections, the total value

aweak
µ = 15.36(10) ·10−10. (5.2)

The corresponding value for the electron case is expected to be ∼ 40000 times smaller,

aweak
e = 0.0297(5) ·10−12, (5.3)

which lies one order of magnitude below the current experimental precision.

6. Determination of the fine-structure constant

In order to answer the question raised at the end of Sec. 1, it is necessary to know the value
of the fine-structure constant at the level of precision that matches the experimental accuracy. In
the case of the electron, the precision required is thus ∆α/α ∼ 0.24ppb. Up to a decade ago, the
most precise knowledge on the value of α was provided by the quantum Hall effect, with however
a relative precision of only ∼ 20 ppb, i.e. two orders of magnitude above what is required. The
situation has changed quite dramatically during the years 2000, with a series of measurements of
the recoil velocity through photon absorption of Cesium [86] and Rubidium [87]-[89]atoms. The
latest value obtained in Ref. [89] is (see also [90])

α−1[Rb11] = 137.035999037(91), (6.1)
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with a relative error of only 0.66ppb, i.e. quite close to what is actually required. The comparison
between the experimental value of ae[HV 08] obtained in 2008 [2] and the prediction using the
value α−1[Rb11] quoted above gives the quite impressive agreement

ae[HV 08]−ae[theory] =−1.05(0.82) ·10−12. (6.2)

Conversely, using the theoretical calculations in order to extract α from the value of ae measured
by the latest Harvard experiment yields

α−1[HV 08] = 137.0359991727(68)α4(46)α5(19)had+weak(331)ae[HV 08], (6.3)

which corresponds to a relative uncertainty of 0.25ppb, more than twice smaller than the relative
error on α−1[Rb11], and with the largest contribution to the error coming from the experimental
uncertainty on ae[HV 08].

7. Conclusion and perspectives for the future

The anomalous magnetic moments of the electron and of the muon have been measured very
precisely (to 0.24ppb and to 0.54ppm, respectively), improving previous measurements by several
factors. Recent high-precision measurements of the fine structure constant in atomic physics allow
to reach the level of accuracy required in order to test QED with ae, and even to become sensitive
to the contributions from the strong interactions aHVP-LO

e [compare Eqs. (4.5) and (6.2)]. Although
ae to date still provides the most precise determination of the fine structure constant, it ist certainly
of interest and worthwhile to pursue the efforts to measure α with the accuracy required to test the
prediction for ae at the level where this quantity has been measured.

The anomalous magnetic moments of the muon probes all the interactions of the standard
model, and perhaps even beyond. Indeed, there is a persistent discrepancy between the measured
value and the SM prediction at the level of 3 to 3.6 σ ,

aexp
µ −aSM

µ = (28.7±8.0) ·10−10 [3.6σ ], (7.1)

with the values from Refs. [54] and [69]. The discrepancy shrinks somewhat below the 3σ level if
one takes Refs. [55] and [70]

aexp
µ −aSM

µ = (25.0±8.6) ·10−10 [2.9σ ]. (7.2)

Whether this discrepancy is real or not will be probed soon by two forthcoming experiments, at
FNAL (E989) and at J-PARC (E34), see [91], which aim at measuring aµ with a relative precision
of 0.14ppm.

The interpretation of these future experiments requires further theoretical improvement on the
evaluation of the hadronic contributions. As far as hadronic vacuum polarization is concerned, im-
provements can be expected from forthcoming data [59]. A more refined theoretical understanding
of the hadronic light-by-light scattering contribution, which remains a difficult challenge, would
also be welcome. Finally, simulations of QCD on the lattice could provide valuable alternative
determinations of these hadronic contributions, provided they can meet the required precision. For
prospects in this direction, see Ref. [92].

9
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