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1. Motivation and program

The Complex Langevin Equation (CLE) has the potential to simulate lattice models for which
usual importance sampling fails. In many cases, especiallyfor QCD at non-zero density, the CLE
in principle provides the (only) model independent procedure.
The real Langevin Equation (LE) is a well studied stochasticprocess. Its redefinition as CLE is
more involved. To develop it to a reliable method is both rewarding and tough. Our program is:
- Define and study the properties of the CLE, test CLE for simple models.
- Apply CLE to realistic models aiming at full QCD at non-zerochemical potential [1].

2. The Langevin equation for real models

The LE for a real fieldϕ(x) evolving in the process timet ("Langevin" time, here discretized) is:

δϕ(x; t) = K[ϕ(x; t)]δ t +η(x; t)

〈η(x, t)〉 = 0, 〈η(x, t)η(x1, t1)〉= 2δ t δx,x1 δt,t1

(δ t: time step, Ito calculus) with the associated Fokker-Planck equation (FPE)

∂tP(ϕ , t) = ∂ϕ
(

∂ϕ −K
)

P(ϕ , t). (2.1)

If the drift K =−∂ϕ S with S a positive definite action we then have asymptotically

t → ∞ P(ϕ , t)→ Pas(ϕ) =
1
Z

exp(−S) , Z =
∫

[dϕ ] exp(−S) . (2.2)

For positive measure the LE is well defined and comparable with Monte Carlo. In the presence of a
sign problem LE may have difficulties. One can study this in simple models and devise systematic
cures [2] overcoming old "disasters" [3]. The problems, however, may be inherited in the CLE.

3. Set up for the CLE

For a complex action the drift is also complex and this automatically provides an imaginary part
for the field. This implies setting up the problem in the complexification of the original manifold
Rn −→Cn or SU(n)−→ SL(n,C) . The CLE then amounts to two related, real LE with independent
noise terms - here for just one variablex → z = x+ iy and withK =−∂zS(z):

δ z(t) = K(z)δ t +
√

NR ηR + i
√

NI ηI

i.e. δx(t) = ReK(z)δ t +
√

NR ηR(t) , δy(t) = ImK(z)δ t +
√

NI ηI(t)

〈ηR〉 = 〈ηI〉= 0, 〈ηRηI〉= 0, 〈η2
R〉= 〈η2

I 〉= 2δ t , NR−NI = 1

The probability distributionP(x,y; t) realized in the process evolves according to a real FPE:

∂tP(x,y, t) = LT P(x,y, t) , L = (NR∂x +ReK(z))∂x +(NI∂x + ImK(z))∂y (3.1)

One can also define a complex distributionρ(x, t)

∂tρ(x, t) = LT
0 ρ(x, t) , L0 = (∂x +K(x))∂x
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with the asymptotic solutionρ(x)≃ exp(−S(x)) and formally prove foranalytic observablesO(z)
∫

O(x+ iy)P(x,y; t)dxdy =

∫

O(x)ρ(x; t)dx.

The formal proof has, however, loopholes related among others to a too wideP(x,y, t) in y [4]. This
width may be enhanced by an imaginary part in the noise, therefore one usually usesNI = 0.

4. Problems and models

Very many studies for CLE have appeared since the original papers of Parisi and of Klauder [5]
including critical analysis, cf e.g. [3]. The problems studied in our group include: Real time
simulations, Chemical potential,θ -term. We here address QCD with chemical potential:

Z =
∫

DU detW e−SY M , (4.1)

W = 1−κ
3

∑
i=1

(

Γ+iUx,iTi +Γ−iU
−1
x,i T−i

)

−κγ
(

eµΓ+4Ux,4T4+e−µΓ−4U
−1
x,4 T−4

)

Wilson fermions,T : lattice translations,Γ±µ = 1± γµ , κ = 1/(2M + 8), M bare mass,γ bare
anisotropy. The temperature is introduced asaT = γ

Nτ
. We have detW (µ) = [detW (−µ)]∗. CLE

does not have an overlap problem such as the reweighting methods (RW) and does not involve
approximations like expansion methods: The ensemble is generated at the actual values of the
parameters without restriction in the latter. The problemsone encounters with CLE can be:
1) Accumulation of numerical errors. Typical effect: run-aways, divergence of some quantities.
This can be efficiently solved by adaptive step size (which weuse throughout our analysis) [6].
2) insufficient fall off of P(x,y) in the non-compact directions can lead to imprecise sampling
and also can spoil the formal proof of equivalence. This can be to a good extent approached by
controlling the dynamics of the process, e.g. bygauge cooling for gauge models (see below).
3) Non-holomorphy of the drift can invalidate the formal proof of equivalence, e.g. poles ofK(z)
coming from zeroes of the measure,ρ(z). To this challenge we only have partial answers [2].
To control the reliability we implement a number of checks (Consistency Conditions CC [7] -
combinations of observables which should vanish identically in the correct case -, monitoring the
distributions) and stabilizing procedures generalizing the CLE [8].

5. One link effective model

A paradigmatic effective model is an SU(3) model with one link U . DiagonalizingU we obtain a
reduced model with the reduced Haar measure in the three diagonal exponentswi

Z =
∫

[dw]ρ(w) , ρ(w) = e−SYM H(w)D(w)D̃(w) , w1+w2+w3 = 0 (5.1)

SYM =−β
2

3

∑
i=1

(

αie
iwi +

1
αi

e−iwi

)

, H = sin2 w2−w3

2
sin2 w3−w1

2
sin2 w1−w2

2
,

D = 1+CtrU +C2trU−1+C3, C = 2κeµ ; D̃ = 1+C̃trU−1+C̃2trU +C̃3, C̃ = 2κe−µ

Ki(w) = KYM, i +H−1∂wi H +D−1∂wi D+ D̃−1∂wiD̃. (5.2)
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Theα ’s simulate the "staples" of the neighbours. As a general remark, observe that one first needs
to complexify the variables, here in going from su(3) to sl(3,C), before deriving the driftK(w).
K(w) is generally meromorphic due to possible poles from the zero’s of the determinants.
We find that correct results are obtained if the flow does not drift too far in the non-compact direc-
tions - Fig. 1. This effect must be monitored and suggests possibilities to redesign the process to
control the skirt of the distribution. Forα complex, far from 1, CLE departs from the exact results
(left plot, solid lines). This correlates here with wide skirts of the Imw-distributions (right plot).
Another source of non-reliability are the poles. This is seen in this model [2] as well as in more
complex models where the determinants may have zeroes [9].
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Figure 1: Effective model: ObservablesOq = eiqz, CC’sEq, q =±1,±2 vsReαi and they-distribution.

6. Many Links models and Gauge Cooling.

To see the effect of many variables we consider an exactly soluble Polyakov chain model:

−S = (β +2κeµ)P+(β +2κe−µ)∗ P−1

with P= Tr(U1 · · ·UN), N up to 1024. The process runs in all 8N (complex) "angles"Aa
i :

δAa
i = εKa

i (U)+
√

ε η , Ui → ei ∑a λa δAa
i Ui

with holomorphic driftK. For largeN we observe, however, wrong evolution even in the real case
(µ = 0) if we set up the process as CLE, although the drift and noiseare real! We quantify this by
measuring the departure of the links from unitarity with aunitarity norm, e.g.

U = ∑
links

[

1
2

Tr
(

U U†+U−1U−1†)−3

]

. (6.1)

This effect - Fig. 2, left plot - suggests that numerical imprecisons may trigger unstable modes
leading away from the real axis. For simpler models fixing thegauge was observed to help [10].
Using the gauge symmetry of the problem we now define a generalGauge Cooling procedure to
bring the system as near as possible to the unitary manifold.This proceeds by successive non-
compact gauge transformations along the gradient of the unitarity normU on the gauge orbits

Rk = e−α ε dU , Uk → Rk Uk , Uk−1 →Uk−1R−1
k (6.2)
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Figure 2: Polyakov chain model, evolution of the unitarity norm in Langevin time. Left plot:µ = 0, various
chain lenths, no cooling. Right plot:µ > 0, N = 32, various coolings.

with α : the strength of thegauge force, ε : Langevin step size. Forµ > 0 U should not be 0 but
stabilize. This we see after gauge cooling (largeα and/or many cooling steps) - Fig. 2, right plot.
Then also the results are correct and the non-compact distributions narrow - Fig. 3.
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Figure 3: Polyakov chain model. Left plot: Polyakov loop average for various chain lengths as function of
the cooling strength. Right plot: Polyakov loop distribution for different amount of cooling.

7. Heavy QCD at non-zero chemical potential.

Taking in the hopping parameter expansion of the fermionic determinant the double limit [11]

κ → 0, µ → ∞, ζ = κ eµ : f ixed . (7.1)

we obtain an approximation for QCD at large mass and chemicalpotential. In this limit only the
Polyakov loops survive and the determinant factorizes. This can be used, e.g. in refined reweighting
(rRW) simulations (cf [12], where also the relevant formulae and the next corrections are given).
Using also the inverse Polyakov loops (which in the above limit are not present) one obtains a
model by itself, HQCD, which can be followed also away from this limit [13]. Both a CLE and an
accordingly "symmetrized" rRW approach can be implementedfor this model.
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Using CLE we observe for HQCD the same effects as for the Polyakov chain. The following results
are obtained with gauge cooling, which ensures a stabilizedunitarity norm [14]. We measure
plaquettes, Polyakov loops P and P−1, baryon densityn and the average phase:

〈exp(2iφ)〉 ≡
〈

detM(µ) detM(−µ)−1〉 . (7.2)

The full YM action is used. We observe stable results for allµ all the way fromµ = 0 up to deeply
in the saturation regime - Fig. 4. The results show the expected behaviour of the Polyakov loops
and baryon density and that the method work very well also in the region where the phase factor is
practically 0 (see also [15] for resummed strong coupling results).
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Figure 4: HQCD model, CLE with gauge cooling: Baryon density and average phase (left plot) and
Polyakov and inverse Polyakov loop averages (right plot) vsµ , 836 lattice.

In the following we compare the CLE results with those from the symmetrized version of rRW
- Fig. 5. Both plaquettes and Polyakov loops agree extremelywell for all values ofµ in the
deconfined region (β = 5.9, 64 lattice - the large errors affect rRW at largeµ). At fixedµ = 0.85, 64

the agreement persists except forβ < 5.7, indicating possible difficulties of the CLE. This effect
seems, however, to beβ and not scale dependent, for large lattices we can reach deeply into the
confining region (compare the 104 lattice, where the transition is expected atβ ≃ 5.9) - Fig. 6. The
excellent agreement between these two completely different methods is a a strong argument for the
validity of both of them in most regions of physial interest.For a general review see [16].
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