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1. Motivation and program

The Complex Langevin Equation (CLE) has the potential toutate lattice models for which
usual importance sampling fails. In many cases, esped@lIQ)CD at non-zero density, the CLE
in principle provides the (only) model independent procedu

The real Langevin Equation (LE) is a well studied stochagtmcess. Its redefinition as CLE is
more involved. To develop it to a reliable method is both nelivey and tough. Our program is:

- Define and study the properties of the CLE, test CLE for sanpbdels.

- Apply CLE to realistic models aiming at full QCD at non-zexieemical potential [1].

2. TheLangevin equation for real models

The LE for a real fieldp (x) evolving in the process time("Langevin" time, here discretized) is:
5¢(x;t) = K[p(x;t)] 6t + n(x:t)
(n(xt)) =0, (n(x.t)n(x1,t2)) =26t &x, &y
(ot: time step, Ito calculus) with the associated Fokker-Raguation (FPE)
AP(¢.t) = p (9 —K) P(¢,1). (2.1)

If the drift K = —dy Swith Sa positive definite action we then have asymptotically

too  P(¢,t) = Pas($) = %exp(—S), - /[d¢] exp(—S). 2.2)

For positive measure the LE is well defined and comparable Mdnte Carlo. In the presence of a
sign problem LE may have difficulties. One can study this mme models and devise systematic
cures [2] overcoming old "disasters" [3]. The problems, begr, may be inherited in the CLE.

3. Set up for theCLE

For a complex action the drift is also complex and this autozably provides an imaginary part
for the field. This implies setting up the problem in the coexfication of the original manifold
R"— C"orJ(n) — S (n,C) . The CLE then amounts to two related, real LE with indepehden
noise terms - here for just one variable> z= x+iy and withK = —d,52):

52(t) = K(2) 8t +vNrnr+ivNi 0
ie  Ox(t) =ReK(2)dt+vNrir(t), dy(t) =ImK(2)dt+v/Nin(t)
(nR) = (m) =0, (Nrm) =0, (nk)=(nf)=28t, Nk—N =1

The probability distributiorP(x,y;t) realized in the process evolves according to a real FPE:
dtp(xayat) = LTP(Xayat)> L= (NR0X+RG<(Z))0X+(NlaX+ImK(Z))0y (31)
One can also define a complex distributjofx,t)

ap(xt) =Lip(xt), Lo= (d+K(x))
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with the asymptotic solutiop(x) ~ exp(—S(x)) and formally prove foanalytic observable®(z)

/' O(x+iy)P(x,y; t)dxdy — / O(X)p(xt)dx.

The formal proof has, however, loopholes related amongstoe too wideP(x,y,t) in y [4]. This
width may be enhanced by an imaginary part in the noise, filverene usually used, = 0.

4. Problemsand models

Very many studies for CLE have appeared since the originaégsaof Parisi and of Klauder [5]
including critical analysis, cf e.g. [3]. The problems saeiin our group include: Real time
simulations, Chemical potentidd-term. We here address QCD with chemical potential:

Z= / DU detwe S, (4.1)

3

W= 1-k5 (FUT+ T UG ) — Ky (M1 aUaTat € HT AU T 4)

==

Wilson fermions,T: lattice translations[ ., = 14y, k = 1/(2M + 8), M bare massy bare
anisotropy. The temperature is introducedads= N—VT We have da/(u) = [detW(—pu)]*. CLE
does not have an overlap problem such as the reweightingoaetiRW) and does not involve
approximations like expansion methods: The ensemble iergted at the actual values of the
parameters without restriction in the latter. The problemes encounters with CLE can be:
1) Accumulation of numerical errors. Typical effect: ruways, divergence of some quantities.
This can be efficiently solved by adaptive step size (whictusgthroughout our analysis) [6].
2) insufficient fall off of P(x,y) in the non-compact directions can lead to imprecise samgplin
and also can spoil the formal proof of equivalence. This camoba good extent approached by
controlling the dynamics of the process, e.g.gayge cooling for gauge models (see below).
3) Non-holomorphy of the drift can invalidate the formal pfof equivalence, e.g. poles &f(z)
coming from zeroes of the measupgz). To this challenge we only have partial answers [2].
To control the reliability we implement a number of check®ii€istency Conditions CC [7] -
combinations of observables which should vanish ider§idalthe correct case -, monitoring the
distributions) and stabilizing procedures generalizimg €LE [8].

5. Onelink effective model

A paradigmatic effective model is an SU(3) model with oné lih. Diagonalizingl we obtain a
reduced model with the reduced Haar measure in the threerdiagxponentsy;

Z= /[dW]p(W), p(w) = e S"H(w)D(W)D(W), Wi+Wy+ws=0 (5.1)
Sim = B o + 1w H = sig "2~ W3 gjrp We — W1 ; p Wi — Wo
M2\ a ’ 2 2 2
D=1+CtrtU+C2rU 1+C3 C=2ket; D=1+CtrU 1+C%rU+C3 C=2«ke ¥
Ki(w) = Kym i + H 20y H +Dd,D+D14,D. (5.2)
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Thea's simulate the "staples"” of the neighbours. As a generahrknobserve that one first needs
to complexify the variables, here in going from su(3) to (3 before deriving the drifk(w).
K(w) is generally meromorphic due to possible poles from the’z@fdhe determinants.

We find that correct results are obtained if the flow does niftttdo far in the non-compact direc-
tions - Fig. 1. This effect must be monitored and suggestsipitises to redesign the process to
control the skirt of the distribution. Far complex, far from 1, CLE departs from the exact results
(left plot, solid lines). This correlates here with widergkiof the Inw-distributions (right plot).
Another source of non-reliability are the poles. This isrsgethis model [2] as well as in more
complex models where the determinants may have zeroes [9].

15

" beta=1, k=0.25, muZ0.5, Histogram of y,: alpha3*=1.0, y(1)
03t alpha3*=0.4

o _ Ipha3*=0.1
S e e — _— a
= e S alpha3+=0.0

|

1k T = ® :4 =
Beta=(1,0), k=0.25, mu=0.5, N;=0, nz=3, vs alpha3*: O,

mO%o

RIS

05

Hre«I>Od

mm

Figure 1: Effective model: Observabled, = €%, CC'sEq, q= +1,+2 vsReq; and they-distribution.

6. Many Links modelsand Gauge Cooling.

To see the effect of many variables we consider an exactiypsoPolyakov chain model:
—S=(B+2ke! )P+ (B+2ke H)* Pt
with P=Tr(Uz---Uy), N up to 1024. The process runs in all §complex) "angles’A%:
OA? = eKA(U)+En , U — e 2ahdy,

with holomorphic driftk. For largeN we observe, however, wrong evolution even in the real case
(u = 0) if we set up the process as CLE, although the drift and revisgeal! We quantify this by
measuring the departure of the links from unitarity withnétarity norm, e.g.

U = [:—LTr(UUU—UlU”)—S . (6.1)
links

This effect - Fig. 2, left plot - suggests that numerical iBggsons may trigger unstable modes

leading away from the real axis. For simpler models fixingghage was observed to help [10].

Using the gauge symmetry of the problem we now define a ge@awage Cooling procedure to

bring the system as near as possible to the unitary manifélds proceeds by successive non-

compact gauge transformations along the gradient of tharitginorm%/ on the gauge orbits

Re=e%¢9% Uy - RUx, U1 — U qR?: (6.2)
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Figure 2: Polyakov chain model, evolution of the unitarity norm in lgawin time. Left plot:u = 0, various
chain lenths, no cooling. Right plogt > 0, N = 32, various coolings.

with a: the strength of thgauge force, €: Langevin step size. Fqr > 0 % should not be 0 but
stabilize. This we see after gauge cooling (lasgand/or many cooling steps) - Fig. 2, right plot.
Then also the results are correct and the non-compactittins narrow - Fig. 3.
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Figure 3. Polyakov chain model. Left plot: Polyakov loop average farious chain lengths as function of
the cooling strength. Right plot: Polyakov loop distrilautifor different amount of cooling.

7. Heavy QCD at non-zero chemical potential.
Taking in the hopping parameter expansion of the fermiogterinant the double limit [11]
K—0, u—ow, (=ke!: fixed. (7.1)

we obtain an approximation for QCD at large mass and chemima&intial. In this limit only the
Polyakov loops survive and the determinant factorizess tan be used, e.g. in refined reweighting
(rRW) simulations (cf [12], where also the relevant fornmubnd the next corrections are given).
Using also the inverse Polyakov loops (which in the abovet lare not present) one obtains a
model by itself, HQCD, which can be followed also away frons fimit [13]. Both a CLE and an
accordingly "symmetrized" rRW approach can be implemefaethis model.
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Using CLE we observe for HQCD the same effects as for the Rolyehain. The following results
are obtained with gauge cooling, which ensures a stabilimgthrity norm [14]. We measure
plaquettes, Polyakov loops P and*Pbaryon density1 and the average phase:

(exp(2i@)) = (detM (u) detM (—p)~1). (7.2)
The full YM action is used. We observe stable results fopuadll the way fromu = 0 up to deeply

in the saturation regime - Fig. 4. The results show the egeloehaviour of the Polyakov loops
and baryon density and that the method work very well alshérégion where the phase factor is
practically O (see also [15] for resummed strong couplirsyits).
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Figure 4. HQCD model, CLE with gauge cooling: Baryon density and agerphase (left plot) and
Polyakov and inverse Polyakov loop averages (right plof) &8°6 lattice.

In the following we compare the CLE results with those frora Bymmetrized version of rRW
- Fig. 5. Both plaquettes and Polyakov loops agree extremwely for all values ofu in the
deconfined regiond = 5.9, 6° lattice - the large errors affect rRW at larg® At fixed u = 0.85, 6
the agreement persists except ok 5.7, indicating possible difficulties of the CLE. This effect
seems, however, to k& and not scale dependent, for large lattices we can reachydieép the
confining region (compare the 4@ittice, where the transition is expecteqBat- 5.9) - Fig. 6. The
excellent agreement between these two completely diffenethods is a a strong argument for the
validity of both of them in most regions of physial intereBar a general review see [16].
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