
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

Recent developments in the tmLQCD software suite

A. Abdel-Rehim
CaSToRC, The Cyprus Institute, Nicosia, Cyprus
E-mail: a.abdel-Rehim@cyi.ac.cy

F. Burger, B. Kostrzewa
Humboldt-Universität zu Berlin, Institut für Physik, Berlin, Germany
E-mail: florian.burger@hu-berlin.de,bartosz.kostrzewa@desy.de

A. Deuzeman
Albert Einstein Center for Fundamental Physics - University of Bern, Switzerland
E-mail: albert.deuzeman@gmail.com

K. Jansen
NIC, DESY, Zeuthen, Germany
E-mail: karl.jansen@desy.de

L. Scorzato
Trento Institute for Fundamental Physics and Application (TIFPA), Trento, Italy
E-mail: luigi@scorzato.it

C. Urbach∗

HISKP (Theory), Rheinische Friedrich-Wilhelms Universität Bonn, Germany
E-mail: urbach@hiskp.uni-bonn.de

We present an overview of recent developments in the tmLQCD software suite. We summarise
the features of the code, including actions and operators implemented. In particular, we discuss
the optimisation efforts for modern architectures using the Blue Gene/Q system as an example.

HU-EP-13/59,SFB/CPP-13-84

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

tmLQCD C. Urbach

1. Introduction

The Lattice QCD community relies to a large extent on the efficient usage of available com-
puter resources. It is, therefore, mandatory to optimise existing codes for new supercomputer
architectures as well as commodity systems newly appearing on the market.

Due to the increasing complexity and diversity of modern computer architectures there is need
for flexible software which allows one to quickly implement and test new developments. Further-
more, lattice QCD actions nowadays simulated have also reached a high level of diversity, which
needs to be mirrored by the software. Writing, debugging and implementing such software re-
quires, hence, a non-negligible amount of manpower.

From this perspective it might appear sensible to develop only one, communitywide code
basis. However, for scientific hygiene there should be clearly at least two or three implementations
available such that cross-checks are possible. Ideally, all the different implementations are publicly
available, which increases the chance to find mistakes in the codes and allowsany lattice QCD
practitioner to re-use them (c.f. Ref. [1]).

By now there are several lattice QCD software suites available as open source, among others
the MILC code [2], Chroma [3], openQCD [4] and bQCD [5]; another one is tmLQCD [6] ob-
tained from github [7]. tmLQCD started as a code for simulations using the Wilsontwisted mass
formulation of lattice QCD, but includes by now a much wider range of actions and lattice Dirac
operators. Moreover, tmLQCD is fully parallelised and includes optimisations for most modern
supercomputer architectures.

2. tmLQCD: General Overview

The tmLQCD software is written in the C programming language following the C99 standard.
It ships with anautoconf configuration script, which makes it relatively easy to compile the code
on most modern computer platforms. It also comes with documentation as a LATEX document.

Once compiled, tmLQCD offers two executables: firstly an inverter offeringa range of iterative
solvers needed for computing propagators. The second executable implements a Hybrid Monte
Carlo (HMC) algorithm [8] for generating gauge configurations using Wilson twisted mass actions,
also including the clover term.

The various physical and algorithmic parameters of both programmes can bychosen by the
user using an input file, which has a simple and human readable syntax. An example of the general
section of such an input file for the HMC might look as follows:

L=4 # s p a c i a l l a t t i c e ex tend
T=8 # t ime ex tend
Measurements = 1000 # no . o f t r a j e c t o r i e s
S t a r t C o n d i t i o n = ho t
R e v e r s i b i l i t y C h e c k = yes # per fo rm r e v e r s i b i l i t y check
R e v e r s i b i l i t y C h e c k I n t e r v a l l =2 # every second t r a j .

The code comes with a selection of sample input files.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

tmLQCD C. Urbach

The executables can be compiled as scalar or parallel programmes to be decided at configure
time. The parallelisation is implemented using a hybrid approach with the Message Passing Inter-
face (MPI) and openMP. The MPI topology and the number of (openMP)threads per MPI task can
be specified in the input file.

tmLQCD directly reads and writes the ILDG gauge configuration format [9] and the SCIDAC
propagator format using the LIME library [10]. There is, therefore, full compatibility to the Chroma
software. Moreover, tmLQCD can be configured to use the Lemon library [11], which is a paral-
lelised replacement of LIME using the MPI parallel I/O capabilities. Lemon significantly increases
the I/O performance on massively parallel machines. In particular, the propagator computation,
usually heavily I/O bound, benefits from the usage of Lemon.

3. Iterative Solvers

One of the main tasks in lattice QCD is solving

D · ψ = η (3.1)

for ψ , whereD is some discretisation of the gauge covariant Dirac operator. Note that we have
suppressed all indices for simplicity. The lattice Dirac operator can be viewed as a large sparse
matrix, which makes iterative solvers and in particular Krylov space solverslike the conjugate
gradient (CG) most suited for solving equation 3.1, see Ref. [12] for a general discussion.

Several discretisations of the Dirac operator are implemented in tmLQCD: the Wilson and
Wilson twisted mass Dirac operators both with and without clover term, the non-degenerate Wilson
twisted mass Dirac operator [13] with and without clover term and the overlapoperator [14, 15].
For Wilson type operators also even/odd preconditioning [16] is implemented.The clover operators
are currently only available with even/odd preconditioning. The operator can be specified in the
input file like in the following example for a (mass degenerate) even/odd preconditioned Wilson
twisted mass Dirac operator:

Beg inOpera to r TMWILSON
2kappaMu = 0 .05
kappa = 0.177
UseEvenOdd = yes
S o l v e r = CG
S o l v e r P r e c i s i o n = 1e−14
M a x S o l v e r I t e r a t i o n s = 1000

EndOpera tor

The physical parameters are theκ = 0.177 hopping parameter and the twisted mass parameterµ,
the latter specified as 2κµ = 0.05. In the above listing the iterative solver to be used is CG, the
solver precision is set to‖Dψ −η‖2 ≤ 10−14 and not more than 1000 iterations should be used.

The list of available solvers includes CG, BiCG, BiCGstab, FGMRES, CGS, EigCG [17] and
GCR. A FGMRES solver applying inexact deflation as discussed in Ref. [18] is also available, as
well as a multiple mass CG solver for the twisted mass Dirac operator [19]. Note that the optimal
(Krylov) solver depends on the particular discretisation of the lattice Dirac operator.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

tmLQCD C. Urbach

4. Lattice Actions

Lattice QCD actions are usually split into a sum of a gauge and a fermionic part.Concerning
the gauge part, tmLQCD implements the Wilson plaquette gauge action and the family ofgauge
actions including an additional planar 2×1 rectangular Wilson loop. These include the tree level
Symanzik improved, the Iwasaki and the DBW2 gauge actions.

For the fermionic part we have implemented several so-called pseudofermion actions. They
are based on the stochastic representation of a determinant of a matrixQ2

det(Q2) =
∫

Dφ†
Dφ e

−φ† 1
Q2 φ

,

where the pseudofermion fieldsφ†,φ follow bosonic statistics. Following the notation of Chroma,
we call one such term a monomial and an example for an input file is as follows:

BeginMonomial DET
T imesca le = 1 # t ime s c a l e t o i n t e g r a t e on
2KappaMu = 0.177
kappa = 0.177
S o l v e r = CG
A c c e p t a n c e P r e c i s i o n =1e−20 # a c c e p t / r e j e c t p r e c i s i o n
F o r c e P r e c i s i o n = 1e−12 # MD e v o l u t i o n p r e c i s i o n

EndMonomial

It corresponds to a two flavour, mass degenerate Wilson twisted mass Diracoperator pseudofermion
monomial. You may specify the solver used in the HMC update, as well as the precisions for the
molecular dynamics (MD) evolution and the accept/reject step.

There is a list of other monomials supported: for two mass degenerate Wilson and Wilson
clover twisted mass fermions there are besides the “det” monomials also ratios of determinants
needed for Hasenbusch mass preconditioning with multiple timescales [20, 21,22]. For the mass
non-degenerate Wilson and Wilson clover twisted mass doublet there is a polynomial [23] and
a rational monomial [24] implemented. Finally, for a single Wilson clover fermion arational
monomial can be used.

tmLQCD offers different schemes for integrating the MD equations of motion:the simple
leap-frog integration scheme, the second order minimal norm scheme and a fourth order Omelyan
scheme [25, 26]. They can be combined on different time scales, as can be seen from the following
input file listing:

B e g i n I n t e g r a t o r
Type0 = LEAPFROG # i n t e g r a t o r on t i m e s c a l e 0
Type1 = 2MN # i n t e g r a t o r on t i m e s c a l e 1
I n t e g r a t i o n S t e p s 0 = 1
I n t e g r a t i o n S t e p s 1 = 2
Tau = 1 # t r a j e c t o r y l e n g t h
NumberOfTimescales = 2

E n d I n t e g r a t o r

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

tmLQCD C. Urbach

The zeroth time scale of the two is the finest, the total trajectory length is specifiedusingτ = 1 and
the number of steps for time scaleN by IntegrationStepsN. The step numbers are defined
recursively. Therefore, the step length on timescale zero is given by∆τ0 = τ/N1/N0 = ∆τ1/N0,
whereNi is the number of steps on timescalei. Note that there are additional factors of 1/2 for the
higher order schemes.

5. Optimisation: Example BG/Q

As mentioned before, tmLQCD includes optimisations for several modern supercomputer ar-
chitectures, IBMs Blue Gene/Q, Intels SSE instruction set and the Aurora architecture. We also
have an inverter and parts of the HMC implemented for NVIDIA GPUs.

Here we will discuss as an example the BG/Q architecture. The BG/Q compute nodes consist
of one CPU with 16 cores with four hardware threads each. Hence, in total there are 64 hardware
threads per node, which can be divided into MPI tasks and/or (openMP)threads. The nodes are
connected via a five dimensional torus network. For a first discussion onhow to port lattice QCD
codes for BG/Q see Ref. [27]. The floating point unit (FPU) includes a four double wide SIMD
vector unit (QPX). For maximal performance it is mandatory to utilise it appropriately. In total one
node of the BG/Q has a peak performance of 204.8 Gflop/s.

For the following discussion we used a hybrid MPI/openMP implementation with always 64
openMP threads and one MPI task per BG/Q node. For a more detailed discussion on how to
optimally use openMP see the contribution [28] at this conference. In figure 1 we show the perfor-
mance of the tmLQCD Wilson Dirac hopping matrix in Gflop/s per BG/Q node as a function of the
node local lattice extentLlocal. Each node worked on a local lattice volume ofL4

local.
First we investigated the code performancewithout internode communication. The plain C99

implementation is shown as black diamonds leading to less than 5% of peak performance, al-
most independently of the local volume. This result points towards a badly saturated FPU. The
red squares represent the code including the QPX instruction set utilising the intrinsic functions
provided by the IBM C compiler. A strong improvement is visible, with up to 25% ofpeak at
Llocal = 12. ForLlocal ≥ 14 the local problem does no longer fit into the cache leading to a plateau
in the performance around 20 Gflop/s per node.

The purple circles in figure 1 represent the hopping matrix with QPX instructions, but now
with internode communication switched on. The MPI overhead turns out to be significant, more
than halving the performance where the local volume fits into cache.

Circumventing this problem is possible by overlapping communication and computation. For
this purpose we use an implementation of the hopping matrix where in a first step we project to
half size spinorsφ+, φ− for all x andµ

φ+(x− µ̂,µ) =Uµ(x− µ̂)P(full→half)
µ (1− γµ)ψ(x) , φ−(x+ µ̂,µ) = P(full→half)

µ (1+ γµ)ψ(x) .

In a second step the communication is performed and finally the result is generated by reconstruct-
ing the full spinor for allx

η(x) = ∑
µ

[

P(half→full )
µ φ+(x,µ)+P(half→full )

µ U†
µ(x− µ̂)φ−(x,µ)

]

.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

tmLQCD C. Urbach

QPX+SPI+EABCDT
QPX+SPI
QPX+MPI

QPX
plain C

Llocal

G
fl
o
p
/
s/
n
o
d
e

201816141210864

80

70

60

50

40

30

20

10

0

Figure 1: Single BG/Q node double precision performance of the hopping matrix in Gflop/s as a function of
Llocal. “Plain C” and “QPX” correspond to measurements with communication switched off using a plain C
implementation and one including QPX instructions, respectively. The other points include communication,
see text for details.

The field φ+,− requires only half the amount of data to be communicated compared to the full
spinor fieldψ . Overlapping communication and computation can now be achieved by dividing
all x into one setxsurfaceresiding on the local surface and a second setxbulk. Then the projection
to φ+,− is first done for allxsurface, then the communication is started non-blocking in parallel to
the the computation forxbulk. When the latter computation is finished it is checked whether the
communication is finished also (c.f. also [29]).

It turns out that this does not work as expected using the MPI library provided on the BG/Q. All
the communication is effectively done in theMPI_Wait and, therefore, there is no gain. However,
IBM provides a lower level communication library called SPI. Replacing the MPI calls with SPI
calls leads to the light blue triangles in figure 1 and, thus, to a significant improvement. The blue
inverted triangles finally include also the correct mapping of the lattice QCD geometry to the five
dimensional BG/Q network. So, eventually we obtain almost the same performance as in the case
with communication switched off.

Acknowledgements

We thank all members of ETMC for the most enjoyable collaboration. B.K. is supported by
the National Research Fund, Luxembourg. This work is supported in part by DFG and NSFC (CRC
110) and by DFG SFB/TR9. A. A.-R. acknowledges support from the PRACE-2IP project under
grant number EC-RI-283493. LS thanks the SUMA project for partial support.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
1
4

tmLQCD C. Urbach

References

[1] A. Deuzeman, PoSLATTICE2013 (2013).

[2] MILC Collaboration,http://www.physics.utah.edu/~detar/milc/.

[3] SciDAC, LHPC, UKQCD Collaboration, R. G. Edwards and B. Joo, Nucl.Phys.Proc.Suppl. 140, 832
(2005),arXiv:hep-lat/0409003 [hep-lat].

[4] M. Lüscher,http://luscher.web.cern.ch/luscher/openQCD/.

[5] Y. Nakamura and H. Stüben, PoSLATTICE2010, 040 (2010),arXiv:1011.0199 [hep-lat].

[6] K. Jansen and C. Urbach, Comput.Phys.Commun.180, 2717 (2009),arXiv:0905.3331
[hep-lat].

[7] ETM Collaboration,https://github.com/etmc/tmLQCD, 2013.

[8] S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Phys.Lett. B195, 216 (1987).

[9] C. E. Detar, PoSLAT2007, 009 (2007),arXiv:0710.1660 [hep-lat].

[10] USQCD Collaboration,http://usqcd.jlab.org/usqcd-docs/c-lime/.

[11] A. Deuzeman, S. Reker and C. Urbach, Comput.Phys.Commun. 183, 1321 (2012),
arXiv:1106.4177 [hep-lat].

[12] Y. Saad,Iterative Methods for sparse linear systems, 2nd ed. (SIAM, 2003).

[13] ALPHA Collaboration, R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, JHEP08, 058 (2001),
hep-lat/0101001.

[14] H. Neuberger, Phys.Lett.B417, 141 (1998),arXiv:hep-lat/9707022 [hep-lat].

[15] H. Neuberger, Phys.Lett.B427, 353 (1998),arXiv:hep-lat/9801031 [hep-lat].

[16] T. A. DeGrand and P. Rossi, Comput.Phys.Commun.60, 211 (1990).

[17] A. Stathopoulos and K. Orginos, SIAM J.Sci.Comput.32, 439 (2010),arXiv:0707.0131
[hep-lat].

[18] M. Lüscher, JHEP0707, 081 (2007),arXiv:0706.2298 [hep-lat].

[19] T. Chiarappaet al., arXiv:hep-lat/0609023 [hep-lat].

[20] M. Hasenbusch, Phys.Lett.B519, 177 (2001),arXiv:hep-lat/0107019 [hep-lat].

[21] M. Hasenbusch and K. Jansen, Nucl.Phys.B659, 299 (2003),arXiv:hep-lat/0211042
[hep-lat].

[22] C. Urbach, K. Jansen, A. Shindler and U. Wenger, Comput.Phys.Commun.174, 87 (2006),
arXiv:hep-lat/0506011 [hep-lat].

[23] R. Frezzotti and K. Jansen, Nucl. Phys.B555, 395 (1999),hep-lat/9808011.

[24] M. A. Clark and A. D. Kennedy,hep-lat/0608015.

[25] J. Sexton and D. Weingarten, Nucl.Phys.B380, 665 (1992).

[26] I. P. Omelyan, I. M. Mryglod and R. Folk, Comput.Phys.Commun.151, 272 (2003).

[27] P. Boyle, PoSLATTICE2012, 020 (2012).

[28] ETM Collaboration, B. Kostrzewaet al., PoSLATTICE2013, 416 (2013).

[29] M. Brambilla and F. Di Renzo, PoSLATTICE2012, 192 (2012).

7


