PROCEEDINGS

OF SCIENCE

Recent developments in the tmLQCD software suite

A. Abdel-Rehim
CaSToRC, The Cyprus Institute, Nicosia, Cyprus
E-mail: a. abdel - Rehi m@&yi . ac. cy

F. Burger, B. Kostrzewa
Humboldt-Universitét zu Berlin, Institut fir Physik, BierlGermany
E-mail: f | ori an. bur ger @wu- berlin. de, bartosz. kostrzewa@lesy. de

A. Deuzeman
Albert Einstein Center for Fundamental Physics - UniversitBern, Switzerland
E-mail: al bert . deuzeman@nmai | . com

K. Jansen
NIC, DESY, Zeuthen, Germany
E-mail: kar | . j ansen@lesy. de

L. Scorzato
Trento Institute for Fundamental Physics and Applicati®i~PA), Trento, Italy
E-mail: | ui gi @corzato.it

C. Urbach*
HISKP (Theory), Rheinische Friedrich-Wilhelms UniveisBonn, Germany
E-mail: ur bach@i skp. uni - bonn. de

We present an overview of recent developments in the tmLQ&fvare suite. We summarise
the features of the code, including actions and operatgoteimented. In particular, we discuss
the optimisation efforts for modern architectures usirggBllue Gene/Q system as an example.

HU-EP-13/59,SFB/CPP-13-84

31st International Symposium on Lattice Field Theory - LIKH 2013
July 29 - August 3, 2013
Mainz, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

tmLQCD C. Urbach

1. Introduction

The Lattice QCD community relies to a large extent on the efficient usage itdilsleacom-
puter resources. It is, therefore, mandatory to optimise existing codesefo supercomputer
architectures as well as commodity systems newly appearing on the market.

Due to the increasing complexity and diversity of modern computer archiescioere is need
for flexible software which allows one to quickly implement and test new devedmts. Further-
more, lattice QCD actions nowadays simulated have also reached a highfleixedrsity, which
needs to be mirrored by the software. Writing, debugging and implementirigssiitware re-
quires, hence, a non-negligible amount of manpower.

From this perspective it might appear sensible to develop only one, comnwidligycode
basis. However, for scientific hygiene there should be clearly at leastitéhree implementations
available such that cross-checks are possible. Ideally, all the diffienplementations are publicly
available, which increases the chance to find mistakes in the codes and atipvesttice QCD
practitioner to re-use them (c.f. Ref. [1]).

By now there are several lattice QCD software suites available as opsesamong others
the MILC code [2], Chroma [3], openQCD [4] and bQCD [5]; anothaeds tmLQCD [6] ob-
tained from github [7]. tmLQCD started as a code for simulations using the Wivsisted mass
formulation of lattice QCD, but includes by now a much wider range of actioddattice Dirac
operators. Moreover, tmLQCD is fully parallelised and includes optimisationsnbst modern
supercomputer architectures.

2. tmLQCD: General Overview

The tmLQCD software is written in the C programming language following the C9@latd.

It ships with araut oconf configuration script, which makes it relatively easy to compile the code
on most modern computer platforms. It also comes with documentatiorgs<Xadocument.

Once compiled, tmLQCD offers two executables: firstly an inverter offexirange of iterative
solvers needed for computing propagators. The second executableniempéea Hybrid Monte
Carlo (HMC) algorithm [8] for generating gauge configurations using d¥ilsvisted mass actions,
also including the clover term.

The various physical and algorithmic parameters of both programmes cemolsgn by the
user using an input file, which has a simple and human readable syntaxafpke of the general
section of such an input file for the HMC might look as follows:

L=4 # spacial lattice extend

T=8 # time extend

Measurements = 1000 # no. of trajectories
StartCondition = hot

ReversibilityCheck = yes # perform reversibility check
ReversibilityChecklntervall=2 # every second traj.

The code comes with a selection of sample input files.

tmLQCD C. Urbach

The executables can be compiled as scalar or parallel programmes tadeddsicconfigure
time. The parallelisation is implemented using a hybrid approach with the Mesaag@® Inter-
face (MPI) and openMP. The MPI topology and the number of (operthiieads per MPI task can
be specified in the input file.

tmLQCD directly reads and writes the ILDG gauge configuration formatrél]tae SCIDAC
propagator format using the LIME library [10]. There is, therefoudl, dompatibility to the Chroma
software. Moreover, tmLQCD can be configured to use the Lemon libdry yvhich is a paral-
lelised replacement of LIME using the MPI parallel I/O capabilities. Lemoniigmtly increases
the I/O performance on massively parallel machines. In particular, thEageator computation,
usually heavily I/O bound, benefits from the usage of Lemon.

3. lterative Solvers

One of the main tasks in lattice QCD is solving

D-¢=n (3.2)

for ¢, whereD is some discretisation of the gauge covariant Dirac operator. Note thaawvee h
suppressed all indices for simplicity. The lattice Dirac operator can be di@se large sparse
matrix, which makes iterative solvers and in particular Krylov space solike¥ghe conjugate
gradient (CG) most suited for solving equation 3.1, see Ref. [12] f@en@i@l discussion.

Several discretisations of the Dirac operator are implemented in tmLQCD: thenAdlsd
Wilson twisted mass Dirac operators both with and without clover term, the agargrate Wilson
twisted mass Dirac operator [13] with and without clover term and the ovepapator [14, 15].
For Wilson type operators also even/odd preconditioning [16] is implementedclover operators
are currently only available with even/odd preconditioning. The operaohe specified in the
input file like in the following example for a (mass degenerate) even/odapdéconed Wilson
twisted mass Dirac operator:

BeginOperator TMWILSON
2kappaMu = 0.05
kappa = 0.177
UseEvenOdd = yes
Solver = CG
SolverPrecision = lel4
MaxSolverlterations = 1000
EndOperator

The physical parameters are the= 0.177 hopping parameter and the twisted mass pararpeter
the latter specified askt = 0.05. In the above listing the iterative solver to be used is CG, the
solver precision is set DY — n||?> < 10-1% and not more than 1000 iterations should be used.

The list of available solvers includes CG, BiCG, BiCGstab, FGMRES, CGf;&[17] and
GCR. A FGMRES solver applying inexact deflation as discussed in Re&ffigkalso available, as
well as a multiple mass CG solver for the twisted mass Dirac operator [19]. Naitéh#moptimal
(Krylov) solver depends on the particular discretisation of the lattice Dipacaior.

tmLQCD C. Urbach

4. Lattice Actions

Lattice QCD actions are usually split into a sum of a gauge and a fermionicQamterning
the gauge part, tmLQCD implements the Wilson plaquette gauge action and the faméygs
actions including an additional planarx2l rectangular Wilson loop. These include the tree level
Symanzik improved, the lwasaki and the DBW2 gauge actions.

For the fermionic part we have implemented several so-called pseudofeatiions. They
are based on the stochastic representation of a determinant of a @trix

det(@?) = /@q)*@fp e ¥%,

where the pseudofermion fielgg, ¢ follow bosonic statistics. Following the notation of Chroma,
we call one such term a monomial and an example for an input file is as follows:

BeginMonomial DET
Timescale = 1 # time scale to integrate on
2KappaMu = 0.177
kappa = 0.177

Solver = CG
AcceptancePrecision =10 # accept/reject precision
ForcePrecision = 1el2 # MD evolution precision

EndMonomial

It corresponds to a two flavour, mass degenerate Wilson twisted masopé@eator pseudofermion
monomial. You may specify the solver used in the HMC update, as well as tbisipres for the
molecular dynamics (MD) evolution and the accept/reject step.

There is a list of other monomials supported: for two mass degenerate WitsbWison
clover twisted mass fermions there are besides the “det” monomials also ratieteaminants
needed for Hasenbusch mass preconditioning with multiple timescales [ZB2]2For the mass
non-degenerate Wilson and Wilson clover twisted mass doublet there is mopabl [23] and
a rational monomial [24] implemented. Finally, for a single Wilson clover fermiaatesnal
monomial can be used.

tmLQCD offers different schemes for integrating the MD equations of mottbe: simple
leap-frog integration scheme, the second order minimal norm scheme aondfadrder Omelyan
scheme [25, 26]. They can be combined on different time scales, agc@ehb from the following
input file listing:

Beginlntegrator

TypeO = LEAPFROG # integrator on timescale 0O
Typel = 2MN # integrator on timescale 1
IntegrationSteps0 =1
IntegrationStepsl = 2

Tau = 1 # trajectory length
NumberOfTimescales = 2
Endintegrator

tmLQCD C. Urbach

The zeroth time scale of the two is the finest, the total trajectory length is spagfiegit = 1 and
the number of steps for time scad\eby | nt egr at i onSt epsN. The step numbers are defined
recursively. Therefore, the step length on timescale zero is givesrdy- 7/N;/No = A11/No,
whereN; is the number of steps on timescal&ote that there are additional factors g&ifor the
higher order schemes.

5. Optimisation: Example BG/Q

As mentioned before, tmLQCD includes optimisations for several moderncpputer ar-
chitectures, IBMs Blue Gene/Q, Intels SSE instruction set and the Aurondecture. We also
have an inverter and parts of the HMC implemented for NVIDIA GPUs.

Here we will discuss as an example the BG/Q architecture. The BG/Q compilgs oonsist
of one CPU with 16 cores with four hardware threads each. Hence, irthieta are 64 hardware
threads per node, which can be divided into MPI tasks and/or (opetiM&ds. The nodes are
connected via a five dimensional torus network. For a first discussitmowrto port lattice QCD
codes for BG/Q see Ref. [27]. The floating point unit (FPU) includesua élouble wide SIMD
vector unit (QPX). For maximal performance it is mandatory to utilise it apjatedy. In total one
node of the BG/Q has a peak performance of.8@3flop/s.

For the following discussion we used a hybrid MPIl/openMP implementation withyas 64
openMP threads and one MPI task per BG/Q node. For a more detailedgi@twn how to
optimally use openMP see the contribution [28] at this conference. Irefijue show the perfor-
mance of the tmLQCD Wilson Dirac hopping matrix in Gflop/s per BG/Q node asdifumof the
node local lattice exterlt;ocq. Each node worked on a local lattice volumd_ﬁjfcal.

First we investigated the code performamgéhout internode communicatioif he plain C99
implementation is shown as black diamonds leading to less than 5% of peaknpenfa, al-
most independently of the local volume. This result points towards a batllyased FPU. The
red squares represent the code including the QPX instruction set utiligrigttisic functions
provided by the IBM C compiler. A strong improvement is visible, with up to 25%edk at
Liocal = 12. ForLoca > 14 the local problem does no longer fit into the cache leading to a plateau
in the performance around 20 Gflop/s per node.

The purple circles in figure 1 represent the hopping matrix with QPX instmstibut now
with internode communication switched.ohhe MPI overhead turns out to be significant, more
than halving the performance where the local volume fits into cache.

Circumventing this problem is possible by overlapping communication and cotigput&or
this purpose we use an implementation of the hopping matrix where in a first st@poject to
half size spinorg™, ¢~ for all xandu

full -half)

pypfull=halh gy, g (xt i,) = P

Ay).

In a second step the communication is performed and finally the result isagethély reconstruct-
ing the full spinor for allx

@ (x—f1,) =Upu(x—

half-full half-full PO
n(x) =3 [Pt o p) + RO (- g ()|
[

tmLQCD C. Urbach

80 T T T T T T T
plain C 3
QPX =m
70 QPX+MPI e 1
QPX+SPI
60 L QPX+SPI+EABCDT v i
Q 50 + | E
”8 v
£
- [] .
% 40 -
o
=
(@) 30 E
u °
v
20 - °] [| s
°
°
10 i
O 1 1 1 1 1 1 1

4 6 8 10 12 14 16 18 20

Llocal

Figure 1: Single BG/Q node double precision performance of the happiatrix in Gflop/s as a function of
Liocar- “Plain C” and “QPX”" correspond to measurements with comitation switched off using a plain C
implementation and one including QPX instructions, reipely. The other points include communication,
see text for details.

The field ™~ requires only half the amount of data to be communicated compared to the full
spinor fieldy. Overlapping communication and computation can now be achieved by dividing
all x into one seksyrraceresiding on the local surface and a secondxggt. Then the projection
to ¢ is first done for allxsyrface then the communication is started non-blocking in parallel to
the the computation fox,,k. When the latter computation is finished it is checked whether the
communication is finished also (c.f. also [29]).

It turns out that this does not work as expected using the MPI libramjged on the BG/Q. All
the communication is effectively done in tM®l Wi t and, therefore, there is no gain. However,
IBM provides a lower level communication library called SPI. Replacing the &4fits with SPI
calls leads to the light blue triangles in figure 1 and, thus, to a significant iraprent. The blue
inverted triangles finally include also the correct mapping of the lattice QClngty to the five
dimensional BG/Q network. So, eventually we obtain almost the same perfoeraarin the case
with communication switched off.

Acknowledgements

We thank all members of ETMC for the most enjoyable collaboration. B.K. isctgh by
the National Research Fund, Luxembourg. This work is supportedtibp&+G and NSFC (CRC
110) and by DFG SFB/TR9. A. A.-R. acknowledges support from thAGHR2IP project under
grant number EC-RI-283493. LS thanks the SUMA project for partippsrt.

tmLQCD C. Urbach

References

[1] A. Deuzeman, PoEATTICE2013 (2013).
[2] MILC Collaboration,htt p: // ww. physi cs. ut ah. edu/ ~detar/m | c/.

[3] SciDAC, LHPC, UKQCD Collaboration, R. G. Edwards and B. Joo, Nucl.Phys.Prqip5a40, 832
(2005),ar Xi v: hep-1at/ 0409003 [hep-lat].

[4] M. Luscher,http://1uscher.web. cern. ch/l uscher/openQCD .
[5] Y. Nakamura and H. Stiiben, PARATTICE2010, 040 (2010)ar Xi v: 1011. 0199 [hep-lat].

[6] K. Jansen and C. Urbach, Comput.Phys.Comnigf, 2717 (2009)ar Xi v: 0905. 3331
[hep-lat].

[7] ETM Collaboration,ht t ps: // gi t hub. conl et nt/ t nLQCD, 2013.
[8] S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Phys.B&95, 216 (1987).
[9] C.E. Detar, Po$ AT2007, 009 (2007)ar Xi v: 0710. 1660 [hep-1at].

[10] USQCD Collaboration,ht t p: // usqgcd. j | ab. or g/ usqcd-docs/c-1i ne/.

[11] A. Deuzeman, S. Reker and C. Urbach, Comput.Phys.Comi83, 1321 (2012),
ar Xi v: 1106. 4177 [hep-lat].

[12] Y. Saad,lterative Methods for sparse linear syster@ad ed. (SIAM, 2003).

[13] ALPHA Collaboration, R. Frezzotti, P. A. Grassi, S. Sint and P.s&/eJHEF08, 058 (2001),
hep-1at/0101001.

[14] H. Neuberger, Phys.Let417, 141 (1998)ar Xi v: hep-1 at/ 9707022 [hep-lat].
[15] H. Neuberger, Phys.LetB427, 353 (1998)ar Xi v: hep-1 at/ 9801031 [hep-lat].
[16] T. A. DeGrand and P. Rossi, Comput.Phys.Comn&dn211 (1990).

[17] A. Stathopoulos and K. Orginos, SIAM J.Sci.Com@&#, 439 (2010)ar Xi v: 0707. 0131
[hep-Tat].

[18] M. Luscher, JHER®707, 081 (2007)ar Xi v: 0706. 2298 [hep-lat].
[19] T. Chiarappaet al, ar Xi v: hep-1 at/ 0609023 [hep-lat].
[20] M. Hasenbusch, Phys.LeB519, 177 (2001)ar Xi v: hep-1at/ 0107019 [hep-lat].

[21] M. Hasenbusch and K. Jansen, Nucl.PiB&59, 299 (2003)ar Xi v: hep-1 at/ 0211042
[hep-lat].

[22] C. Urbach, K. Jansen, A. Shindler and U. Wenger, Conhyts.Communl74, 87 (2006),
ar Xi v: hep-1 at/ 0506011 [hep-lat].

[23] R. Frezzotti and K. Jansen, Nucl. Phip&55, 395 (1999)hep- | at / 9808011.
[24] M. A. Clark and A. D. Kennedyhep- | at / 0608015.

[25] J. Sexton and D. Weingarten, Nucl.PhB880, 665 (1992).

[26] I. P. Omelyan, I. M. Mryglod and R. Folk, Comput.Physmoun.151, 272 (2003).
[27] P. Boyle, P03 ATTICE2012, 020 (2012).

[28] ETM Collaboration, B. Kostrzewat al., POSLATTICE2013, 416 (2013).

[29] M. Brambilla and F. Di Renzo, POSATTICE2012, 192 (2012).

