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The term Tensor Network States (TNS) refers to a number oflifssrof states that represent
different ansatze for the efficient description of the stdte quantum many-body system. Matrix
Product States (MPS) are one particular case of TNS, andbde@ne the most precise tool for
the numerical study of one dimensional quantum many-boslegys, as the basis of the Density
Matrix Renormalization Group method. Lattice Gauge Theni(iLGT), in their Hamiltonian
version, offer a challenging scenario for these techniqu®ile the dimensions and sizes of
the systems amenable to TNS studies are still far from tholsieeable by 4-dimensional LGT
tools, Tensor Networks can be readily used for problems lwiriore standard techniques, such
as Markov chain Monte Carlo simulations, cannot easily lackExamples of such problems
are the presence of a chemical potential or out-of-equilibrdynamics. We have explored the
performance of Matrix Product States in the case of the Suiwvimodel, as a widely used
testbench for lattice techniques. Using finite-size, opmmidlary MPS, we are able to determine
the low energy states of the model in a fully non-perturkeathanner. The precision achieved by
the method allows for accurate finite size and continuunt léxirapolations of the ground state
energy, but also of the chiral condensate and the mass gagsstiowing the feasibility of these
techniques for gauge theory problems.
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1. Introduction

Tensor Network States (TNS) are ansatze for the descripfignantum many-body systems,
whose common characteristic is the efficient encoding oktitanglement pattern present in the
physical states. The Matrix Product State (MPS) ansatz [3,,4] explains the enormous success of
the Density Matrix Renormalization Group (DMRG) algorithif) 6] at computing ground states
of quantum spin chains. The insight gained from quantumrim&ion theory [7] allowed the
extension of tensor network (TN) methods to higher dimaemsi@and dynamical problems. In the
last years, TN algorithms are hence seen as a very promigipgpach for strongly correlated
guantum many-body problems, with the potential to attac&stjons which are hard for other
techniques, such as Markov chain Monte Carlo simulatianpaiticular, fermionic or frustrated
spin systems, and out-of-equilibrium dynamics.

Quantum field theories, in particular in their lattice fodation, open a particularly interesting
realm of application for these non-perturbative technéqueattice Gauge Theory (LGT), despite
its enormous theoretical and technical development, naigeli applicability when dealing with
dynamics or finite density, and TN methods could in the futefgesent an alternative approach,
capable to overcome some of these problems. Although $&ud&approaches have already been
tried on different lattice field theory problems [8, 9, 10],Xhere is not yet a systematic exploration
of the power of these techniques to tackle the questionstaatiard LGT methods face.

In [11] we showed the suitability of the MPS ansatz to degcribt only the ground state, but
also the excitations of the lattice Schwinger model, andéalpce continuum limit extrapolations
of the mass spectrum whose precision can compete with th@thef numerical techniques. De-
spite the very precise estimation of the energy, other @bbérs [12] might be more sensitive to
truncation errors and yield a considerably worse estimatitere, we complement the study in [11]
with the explicit calculation of the chiral condensate, ahdw that the MPS method also provides
accurate continuum limit extrapolations, beyond the gienireached by perturbative [13, 14] or
non-perturbative methods [15, 16].

2. Themoded

To probe the suitability of MPS methods for LGT problems, ltitéice Schwinger model [17,
18] in its Kogut-Susskind Hamiltonian formulation [19] ised as test bench. Via a Jordan-Wigner
transformation, the fermionic degrees of freedom can bepepo spin variables [20]. The ad-
ditional gauge degrees of freedom sitting on the links amstained by Gauss’ law, which in
the case of open boundary conditions (OBC) considered loenpletely fixes the electric field up
to a constant. This is enough to fully eliminate the gaugéalbdes and work with the following
dimensionless long-range spin model [21]

2
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where the Hamiltonian parameters- 52152 andu = 622% are expressed in terms of the lattice spac-
ing, a, the coupling,g, and fermion mass. The parametef represents the boundary electric
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field on the link to the left of site 0, which can describe thekzmound field. For OBQ is non-
dynamical, and in the following we choose it to be zero. Tfaee we can use a tensor product
spin basidig...in-1), with i, = {0,1}, to describe the states of the system.

3. Chiral condensate

All observables can be written in terms of spin operatorspanicular the fermionic conden-
sate, (P(x)¥(x))/g reduces to the ground state expectation valug of X G yn(—1 )”HUn The
naively computed chiral condensate—= <GS|Z|GS> diverges Ioganthmlcally in the limia — 0
for non-vanishing fermion mass [15, 16, 22]. This divergeixalready present in the free case,
where the theory is exactly solvable. Indeed, in the noaradting case (2.1) reduces to the XY
spin model in a staggered magnetic field, whose ground steig) in the case of OBC, reads
Eo = %N ZN/Z \/uz +4x2co2 . The expectation value &f can then be computed from the

dE
W as

N+1

N/2
X
2free = \/_ s : (3'1)

=1 \/uz + 42 cog ¢

We may use the exact value of the free condensate to subtieactitergence from the ob-
servable computed in the interacting case. Our numericaegoiure extracts the continuum limit
by first making the physical volume infinite at constant tatspacing (equivalent to the thermo-
dynamic limit of the discrete problem) and then extrapalatio x — c. The divergence is only
present in the second step, when the lattice regulatorvagisvhile the first limit can be evaluated
via a finite volume extrapolation. In the free case we canadlgtextract analytically the exact
value ofZee in the bulk, at fixedm/g, x), when (3.1) can be evaluated as an integral, to yield

(bulk) m 1 1
zfree (m/ga ) - K ( 2 ) ’ (32)

where Ku) is the complete elliptic integral of the first kind [23]. Exphing this expression for

X — oo shows a divergent logarithmic teréﬁi%‘ logx. The divergence can be substracted from the
interacting chiral condensate after the infinite volumeapalation using the exactly computed free
condensate (3.2). The interacting case may neverthelgssliice further logarithmic corrections
to higher orders ir% that need to be taken into account in the continuum limitagdtation.

4. Matrix Product State M ethods

We approximate the ground state of the Hamiltonian (2.1) MP&, i.e. a state of the form
W) = zﬁ;ﬂNil:Otr(Ag)...Ail{l“;ll)\io...iN_ﬁ, whered = 2 is the dimension of the local Hilbert
space for each chain site. The state is completely detedipeheD-dimensional matrices,
and hence the bond dimensidd, controls the number of parameters in the ansatz. A MPS ap-
proximation to the ground state with fix&dcan be found variationally by successively minimizing
the energy with respect to each of the individual tensord,i@nating the procedure until conver-
gence [4, 6]. The MPS ansatz is known to provide good appratiims to the ground states of
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Figure 1: Convergence of the condensate value with the bond dimer3idior x = 100 andN = 300 for
the massless (left) and a massive case (right). To betteeaippe the convergence, we plot the difference
between the observable at each bond dimension and the axireadbfor the maximurdmax = 140 (respec-
tively p,,., = 0.174663 and @#84859). Dashed lines show the extrapolation/B {linear from the largest
values ofD), with the final value displayed as a star. The error is esgchfrom the difference between this
value and the one for the largest compuied

local gapped Hamiltonians, but has been used to more gemedsgls. In [11] we found, indeed,
that the ansatz is appropriate for the Schwinger modelrataly reproducing not only the ground
state energy, but also the mass spectrum.

Applying the variational MPS algorithm with open boundaonditions we obtained an ansatz
for the ground state for various sets of parameter4y,x, N, D). We studied four different values
of the fermion massm/g = 0, 0.125 0.25, 0.5, and for each of them probede [20,600. In
order to extract the bulk limit for each givém/g, x), we solved the ground state problem for five
different system sizeN > 20,/x, to ensure large enough physical volumes. For each syswan si
we ran the algorithm for bond dimensiobsc [20, 140, and stopped the iteration when the relative
change in energy from one sweep to the next was belewl 012,

After the variational algorithm has converged for a patticset of parameter$m/g, x, N, D),
we obtain a MPS approximation to the ground state, from wiveltan easily compute expectation
values of local operators or their tensor products. In oralextract the continuum limit properties
for different fermion masses, we need to perform successitt@polations of the corresponding
observables in the bond dimensid@h,— o, the system sizé\ — oo, and the lattice spacin% =
ga— 0. A detailed description of the numerical method and theesmonding error analysis can
be found in [11], where we performed this procedure to ekxttaethe ground state energy density
and the mass spectrum.

Here we repeat the analysis for the expectation valieiothe ground state. Our results show
very good convergence in the bond dimensibnand we can reliably estimate the observable for
a given set of paramete(m/g,x) and a given system sizhl, from the linear extrapolation of the
largest computed bond dimensions, as illustrated in Figram these values, we perform a finite
size extrapolation using a linear functid(N) = A+ %, which perfectly describes our observations
(Fig. 2). The error of the thermodynamic limit is estimateahfi the width of the 68% confidence
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Figure 2: Finite volume extrapolation of the (substracted) condenfa x = 100 in the case of massless
fermions (left) andn/g = 0.25 (right). We fit the results to a linear function ifil, shown by a dashed line.
The extrapolated value is indicated by a star.
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Figure 3: Substracted condensate as a function/gf/a for fermion masses/g= 0 andm/g = 0.25. The
error of each point (in most cases smaller than the markefligkcts the uncertainties of the linear finite size
extrapolations. In the massless case, the exact sl /(2r%/2) ~ 0.159929 is indicated on the vertical
axis. The dashed lines corresponds to the fit of the whole atedgangex € [20, 600.

interval for the fitted paramete.

From this thermodynamic values, for each giverig, X) we subtract the exact free condensate
in the bulk, (3.2). Finally, the continuum limit extrapatat can be attained from all computed
values. According to the discussion in the previous segctiorergent log terms are not present
in the substracted condensate, but there might be res&dagh corrections introduced by the
interaction, and which cannot be substracted. We thus ugkddit the form

logx 1

f(x) =A+F—— +B—

(X) + U + K

which, as seen in Fig. 3, describes our computed data exyremedl. Finally, we obtain for the
condensate the following values.

1
C- 4.1
+C3, (4.2)
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Substracted condensate
m/g | MPS with OBC| exact
0 0.159930(8) | 0.159929
0.125| 0.092023(4) -
0.25 | 0.066660(11) -
0.5 0.042383(22) -

5. Discussion

We have extended our previous study of the Schwinger modey B8PS to the computation
of the chiral condensate. Determining this quantity in tbatmuum is a more challenging task
than finding energy levels, as evidenced by the few numeestahations found in the literature.

We obtain a remarkably accurate values of the condensateeimassless case, where we
can compare our estimate to the exact result. For the massses, there are not many previous
calculations in the literature, or the ones available gmoad to different masses and thus do not
allow for a direct comparison to our results. In the casmgf = 0.125, we are in good agreement
with the approximate value.@929, from [14].

Our results show the feasibility of the MPS ansatz to desctiite physical states relevant
for a lattice gauge theory problem. The technique allowsouséch precisions that suffice for
accurate finite size and continuum extrapolations, andentify the asymptotic approach to the
continuum. These results pave the way to further applicatiof MPS or more general tensor
network techniques to more challenging problems in theecdruf LGT.
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