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NSPT and the Gradient Flow Mattia Dalla Brida

1. The gradient flow coupling

In these Proceedings we focus on the pure SU(3) gauge theory. The Yang-Mills gradient flow
By (t,x),t >0, is then defined by the flow equation (see [1] for an introduction)

atB‘u :DVG\//J, B'u|t:0 :AIJ'7 (1.1)
G#v:a'qu_avB#—i—[B#’Bv], D” :a‘u—i—[Bu, ], (1.2)

where Ay (x) is the fundamental gauge potential integrated over in the functional integral. A key
feature of the flow is that correlation functions of the field B (¢,x) are automatically finite for flow
times ¢ > 0 once the bare parameters of the theory have been renormalized [2]. Such correlation
functions are thus well-defined observables and provide appealing probes for the properties of the
theory. One particularly interesting application of the flow is the non-perturbative determination
of the running coupling. Through observables at positive flow time one can naturally define a
renormalized coupling [1] and compute its scale evolution using step scaling [3].
Consider for example the flow energy density,

1
(E(1)) = =5 (Tr{Guv(1)Guv (1)}). (1.3)
As shown in [1], a renormalized coupling can be defined in infinite volume as
4r)?
2(n) = (3><t2E<t)>, u=1/V3, (14)

where the renormalization scale p is set by the flow time. In a finite volume one can analogously
define a running coupling by scaling the renormalization scale ¢t and all other dimensionful quanti-
ties in the system in fixed proportions to the finite spatial extent. Such a definition has been studied
in a finite volume with periodic boundary conditions [4], and recently in a box with twisted bound-
ary conditions [5]. Here we are interested in the gradient flow (GF) coupling in a finite volume
with Schrodinger functional (SF) boundary conditions, which is defined as [6]

Ser(L) = N NEPE(t,x0))—22s, T=L, x0=T/2, (1.5)

where c is a constant that relates the flow time to the spatial extent L, and .4 ensures the correct
normalization gép = glszS—i— O(gfst). The specific scheme in (1.5) (and so the constant .4") in fact
depends on the Dirichlet boundary conditions at xo = 0, 7', and the values of ¢, xo, and T'/L one
considers.! The SF boundary conditions can be chosen such that there is a unique global minimum
of the action (up to gauge transformations) around which the perturbative expansion of the coupling
is easy to set up [6, 7]. This is indeed crucial for the application we are going to discuss.

In these Proceedings we study the GF coupling in the SF using lattice perturbation theory.
From perturbation theory one can extract valuable information for a non-perturbative determination
of the running coupling. First of all, the matching to other schemes is generally done at high
energies using perturbation theory. Secondly, cutoff effects in the step-scaling function can be

Note that SF boundary conditions break translational invariance in time. The flow energy density E thus depends
explicitly on the time coordinate x.
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determined perturbatively and be used to improve non-perturbative data [8]. In order to make
these determinations more effective, however, perturbation theory needs to be pushed beyond the
1-loop order, which is in most cases technically involved. Although codes have been developed
for the automation of such calculations [9], the inclusion of the gradient flow and the need for high
order contributions complicate things further, rendering these computations rather challenging.
For this reason we rely on Numerical Stochastic Perturbation Theory (NSPT) (see [10] for an
introduction). Due to the similarities between the Langevin and gradient flow equations, NSPT is
a natural framework for a perturbative numerical solution of the flow. In the next section we start
with a reminder of the lattice setup as discussed in [6]. We then recall the basics of NSPT and
explain how the gradient flow equation can be solved in this framework. Finally, we present our
results for the flow energy density E to 3-loops in perturbation theory which gives direct access to
géF at 2-loops.

2. The gradient flow coupling on the lattice

The gradient flow equation (1.1) can be studied on the lattice by introducing the field V), (z,x)
(also known as “Wilson flow” [1]) defined by the equation

AV (t,x) = —{g5VauSw (V(1)) }Vu(t,x),  Viu(0,x) = Up(x), 2.1

where V., is the Lie-derivative with respect to V,(¢,x), and Sy is the Wilson plaquette action.
Analogously, we choose the Wilson plaquette action also for the gauge field U, (x). Following [6],
we then consider an (L/a)* lattice and impose, for all values ¢ > 0 of the flow time, the SF boundary
conditions:

Vi(t,x+kL) =V (t,%),  Vi(t,%)|sp=0.2 = 1. (2.2)

Given these boundary conditions, the action Sy has a unique global minimum (up to gauge trans-
formations) corresponding to the field configuration #}, (x) = 1, Vx, u. Finally, we define the energy
density E on the lattice through the continuum formula (1.3) and the lattice definition of the field
strength tensor Gy given in [1]. In fact, as noticed in [6], a renormalized coupling can be de-
fined as in (1.5) considering only the spatial or temporal components of the strength tensor in the
expression for E. Later, we will refer to the corresponding contributions as E; and E;, respectively.

3. A numerical perturbative solution for the gradient flow

The idea of NSPT is to solve the equations of stochastic perturbation theory numerically [11].
One starts from the stochastic quantization of the lattice theory, where the fundamental fields evolve
in the extra coordinate #; (known as stochastic time) according to the Langevin equation

9, Uy (t5,%) = —{ VouSw (U (1)) + M (t5,%) } Uy (85, %), (3.1

where 1 (#;,x) is a Gaussian distributed noise field. The Langevin equation is then discretized in
the stochastic time, #; = né&;, and a general solution is obtained according to a given integration
scheme e.g. Runge-Kutta. Last, introducing in the solution the perturbative expansion

(£, X —>Zgo Ntox), U (15,0) = 74 (%), (32)
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where ¥ is the field configuration around which we expand, the result is a hierarchy of equations
that can be truncated consistently? and solved numerically. In the limit of #, — oo the noise average
of any observable & evaluated on the perturbative solution (3.2) is then expected to converge order-
by-order in perturbation theory to the corresponding expectation value of the lattice theory, i.e.

Eﬁ@ﬂ;%UWmﬂ%=££;%%WWmn=;%ﬁa (3.3)

where (---)y is the average over the noise field distribution, and & is the k-th order coefficient of
the perturbative expansion of (&). The gradient flow can now be included as follows. Compared
to the Langevin equation, there are two important differences to consider: in the flow equation
the noise term is absent, and the initial distribution of the gauge field U, (x) (here given by a
perturbative expansion of the Langevin equation) has to be taken into account (cf. (2.1)). To this
end, we introduce in a discrete solution of the flow equation

V#(ts;t,x)—>Zg’5vﬁ">(tx;t,x), Vi (1:0,0) = UL (1,), VK, (3.4)

k

where t = ng, and V), (t5;1,x) inherits the #; dependence from the initial condition. The result of the
expansion is the same hierarchy of equations as for the Langevin equation, except that the noise
field is set to zero. For a given initial gauge field configuration, the flow equation can thus be
integrated numerically up to the desired flow time, order-by-order, using the same techniques. In
particular, note that the flow field (3.4) is a function of the gauge field (3.2) through the initial
condition. The perturbative expansion of any flow observable is then obtained as in (3.3).

To conclude, both perturbative solutions of the Langevin and flow equations are derived from
a discrete approximation of these equations. Results have then to be extrapolated for &,& — 0 in
order to eliminate the effects of the discretization. In addition, in NSPT stochastic gauge fixing is
fundamental to obtain sensible results [10]. We refer however to [12] for a detailed discussion of
stochastic gauge fixing in NSPT for SF schemes.

4. Results

4.1 Determination of /" and comparison with analytical results

As discussed before, a renormalized coupling can be defined considering the separate contri-
butions
&= (PE(,L)2) = Mg+ g+ 6 g+ i=st, (@.1)

where the lowest-order coefficient ./~ enters as part of the definition of the coupling (we leave out
the subscript i when a statement holds for both s and ¢). This term has been computed in [6] for the
lattice setup we are considering. As a first result we reproduced the values of .4~ for lattices up to
L/a = 12, and different choices of ¢ (cf. 1.5). Some examples are collected in fig. 1. The data are
extrapolated in &2 since a second-order integrator was used for both the Langevin and flow equation
and we took & = €. In particular, we considered a linear fit to all data points and a constant fit to
the data omitting € = 0.05, and estimated systematic effects as the difference between the two fits.
The extrapolated values agree within errors with the analytical results.

2Note that the stochastic time has to be rescaled as #; — g(% t; in order to make this expansion consistent.
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Figure 1: Extrapolations of ./ to zero step-size for L/a = 12 and several schemes c. Left: Values
for the spatial contribution .4;. Right: Values for the temporal contribution .4;. Analytical results
are depicted as triangles.

4.2 Determination of &(!) and comparison with Monte Carlo data

Next, we consider the NLO contribution given by &(!). For this quantity no independent
determinations are available for direct comparison. Hence, as a crosscheck on our results, we
obtained an estimation of &!) from Monte Carlo (MC) simulations. We performed pure SU(3)
gauge simulations at 12 values of B = 6/g2 € [50,1200] at fixed L/a, and we extracted &(!) from
a fit of & to (4.1) fixing .4 to its analytical value. The results we obtained for L/a = 8§ are
summarized in Table 1. The agreement between NSPT and MC simulations is generally good
(max deviation ~ 2.6 0), and we note NSPT to be systematically more precise at a comparable
computational cost.

(g}(l) @@t(l)
c MC NSPT MC NSPT
0.19 0.004780(86) 0.004631(22) 0.004859(90) 0.004615(23)
0.30 0.00552(15)  0.005464(49) 0.00557(17)  0.005407(52)

0.40 0.00483(18)  0.004776(64) 0.00479(22)  0.004715(66)
0.50 0.00355(14)  0.003489(64) 0.00351(21)  0.003499(63)

Table 1: Comparison between Monte Carlo and NSPT results for &(!) for an L/a = 8 lattice and

different values of c. The spatial éas(l) and the temporal contribution é‘}m are shown.

4.3 Determination of &2

The highest order we have computed is the NNLO contribution €. An example of the € — 0
extrapolation for an L/a = 8 lattice is shown in fig. 2. The results of the extrapolations have been
compared with the ones obtained by MC simulations. Although agreement was found, the errors on
the extracted values for &2 from MC simulations were quite large (about 20-50%), thus providing
not such a stringent constraint on our determination. Smaller values of 3 have probably to be
considered in order to resolve this contribution from the MC data. The results obtained from NSPT
however have a good overall precision of ~ 1% for this small lattice size.
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Figure 2: Extrapolations of & @) to zero step-size for L/a = 8 and several schemes c. Left: Values
éas(z). Right: Values for the temporal contribution @“;(2).

for the spatial contribution

4.4 Relative variance and autocorrelations
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Figure 3: Relative variance as a function of ¢ for different L/a for computations at € = 0.0125.

Finally, we present some results on the variance of &; (analogous results hold for &;). More
precisely, in fig. 3 we show the relative variance of .4; and @@S(z) as a function of ¢ for different lattice
sizes L/a. Here we consider only computations with € = 0.0125 which are the most expensive ones
we performed. The first observation is that the relative variance is rather independent of L/a for
schemes with ¢ = 0.3. Secondly, higher order terms have relative variance comparable to the lowest
ones, indicating that a similar level of precision can be reached. Note in particular that the results
in fig. 3 give direct information on the number of independent measurements necessary to obtain a
certain precision on the result. For example, to compute .45 for ¢ ~ 0.3 at the 0.1% level we need
~ 5000 independent measurements, for &(2) instead ~ 9000 are necessary. The level of precision
on gép one can achieve then seems relatively good with moderate statistics. To conclude, one has to
consider that in order to obtain &®) for a given scheme ¢ at a certain level of precision, the cost of
the computation scales o (L/a)®. Apart from the volume factor o< (L/a)*, the cost of integrating the
flow increases o (L/a)? for fixed ¢ (cf. (1.5)). Autocorrelations also increase o< (L/a)? as expected
for the Langevin dynamics. The measurement frequency of the flow along the stochastic time then
can be scaled o< (L/a)~? without significant loss in the statistical precision of the determination.
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5. Conclusions & outlook

We studied the flow energy density E in the SF at 3-loops in perturbation theory for the pure
SU(3) gauge theory. We reproduced the values for .4 in [6] and compared higher orders to MC
results finding good agreement. Our study shows that a precise determination of gép using NSPT
is feasible with moderate statistics. As a next step we plan to investigate the GF coupling in QCD.
Larger lattice sizes will be considered in order to extrapolate the matching coefficients to other
schemes, and the corresponding cutoff effects in the step-scaling function will be determined.
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