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1. Introduction

In these Proceedings we investigate the effects of dynamical quarks on gluonic observables. In
the high-energy sector the dominant effect of dynamical quarks is well understood in terms of the
running of the coupling. To probe the low-energy sector we use the recently introduced gradient
flow, which allows to define new renormalisation-group-invariant observables [1]. Here we con-
centrate on #y and wg as well as the topological susceptibility. We compute them with Ny = 2 light
dynamical quarks using the CLS ensembles, based on O(a)-improved Wilson fermions (see [2] for
the set of ensembles), and we compare with Ny = 0 and N; > 2 results from the literature. Clearly,
the topological susceptibility is of particular interest since chiral perturbation theory predicts a sup-
pression proportional to the quark mass for light sea quarks. However, critical slowing down of the
topological modes makes the susceptibility particularly difficult to study [3]. Taken together this
means that the susceptibility is an important indicator for the correctness of the simulations.

The gradient flow is defined by the following equation [1]:

atBM(x7t) :DVGVM(XJ)’ Bll(xao) :All(x)v (11)
Guv = By —dyBy + [By,By], Dy =09u+[By,], (1.2)

where By (x,1) is the gauge field at positive flow time # (which has dimension length squared). The
energy density (E(t)) = — 3 (tr{Guy Gy }) has been used to define a scale fo via t*(E(t)) ‘t:to =0.3.
In general, the correlation functions of the smooth field B, (x,7) do not need renormalisation at
any separation in space-time. Therefore g(x,t) = —ﬁs“"p"tr{G#v(x,t)GpG(x,t)} can be used
directly to define the topological charge Q(t) = a*¥, q(x,t). We evaluate it at t = #y using the
clover-type (“symmetric”, cf. [1]) discretisation of Gy (x,1).

2. Topology and auto-correlations

Following [1] we check how strong the separation of topological sectors is realised with our
lattice action. In principle the suppression of regions in configuration space between the charge
sectors could be stronger or weaker than in the pure gauge theory. However, as for the pure Wil-
son gauge theory [1], we find that the probability of fields “between the sectors” goes to zero as
Ro(m)~1° also for our theory including dynamical Wilson fermions. By Ro(m) we denote rq/a as a
function of the quark mass, a measure for the gluonic correlation length of the system. Fig. 1, left,
shows the scaling with a at fixed pion mass, but we also verified the Ro(m)~!? scaling as a function
of the quark mass at fixed bare coupling.

The strong depletion of the configuration space between the sectors means that eventually the
topological charge will not be properly sampled at all. In our case, the algorithm has difficulties and
auto-correlations are large in particular for our a = 0.048 fm ensembles. They have to be controlled
in order to obtain reliable MC results and errors. We first look at the auto-correlation functions of
the observables under study and, in order to quote a safe error estimate for our results, we follow
the method developed in [3] to evaluate the auto-correlation times Tex, and Tip.

In Fig. 2 we plot some examples, for two lattice spacings, of the auto-correlation functions
p(tmc), normalised as p(0) = 1, of fg and Q(to). In both cases auto-correlations are under reason-
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Figure 1: Left: probability of s,(r) = Retr(1 — V;(p)) (where V; is the plaquette loop) to be bigger than a
certain value s at fixed romy =~ 0.6. Note that for s, < 0.067 the space of lattice fields consists of disconnected
sectors [4]. Right: normalised auto-correlation function of 7y with periodic and open BC with a = 0.075 fm,
my ~ 280 MeV and roughly 1000 MDU.
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Figure 2: Normalised auto-correlation functions at a = 0.075 fm, m; ~ 280 MeV (top), and at a = 0.048 fm,
my = 340 MeV (bottom). The red curves are our estimates of the contribution of the tails of p.

able control. For our lattice spacings, #o shows larger auto-correlations than the topological charge.
It is in fact a good estimator of the exponential auto-correlation time, better than the Q2 used in [3].

Recent studies [5] showed that when open boundary conditions (along the Euclidean time) are
employed, the MC sampling of topology is significantly accelerated. We observe that, at our largest
lattice spacing, the ALPHA Collaboration open BC simulation has similar auto-correlations as the
periodic BC one, as shown in Fig. 1, right. Note that the two simulations do not use exactly the
same algorithm.

A further very useful test of the quality of the ensembles is to look at the distributions of the
topological charge. We define the observable

1

(@) =60~ (v=2)0(v+3-0), VveEN, e

whose mean value (f,(Q)) = P(v) is the probability of the topological charge to be in the unit
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Figure 3: Left: probability distribution of the topological charge at = #y of our intermediate lattice spacing.
For this ensemble m; = 192 MeV and fic = 1100 MDU. Right: the susceptibility in units of #o; the large
mass asymptotic value from Ny = 0 is indicated as a horizontal error band, while the lowest order chiral
perturbation theory prediction (using our results for 7 f,%) is the purple band.

length interval around v. It is a standard observable whose error can be computed as above. In large
volume P(Vv) approaches a Gaussian [6]. We find this well realised when the Monte Carlo history
is at least ~ 207cxp, (e.g. Fig. 3, left). Our errors render corrections to the gaussian behaviour
invisible.

We now restrict ourselves to the ensembles with a length of at least ~ 207, and investigate
the quark mass dependence of the susceptibility ¥ (t9) = (Q*(to))/(L* - T). From the comparison
to the Ny = O result [7, 1] in Fig. 3, right, the strong suppression of the susceptibility caused by
the sea quarks is evident. However, also lattice spacing effects are clearly visible. Note that } has
dimension (mass)~*, where scaling violations, e.g. simply induced through the scale setting, are
strongly enhanced. Similar scaling violations have been observed in [8]. When the lattice spacing
is reduced down to a = 0.048 fm, we obtain a result in rough agreement with the leading order of
the chiral expansion of the susceptibility

2.2
o

25 0. 2.2)

% = FE(1+0(m))

3. Scales from the gradient flow

In scale setting [9], statistically precise scales that mildly depend on the quark masses are
particularly welcome. A scale closely related to #y is wo, defined by [10] t%[tzE (1)] ‘ —— 0.3.
Despite the large auto-correlations shown above, both 7y and wg are more precise than ry [11]; their
variance is very small.

At fixed B a dependence on the renormalised quark mass is present but not very strong. We
linearly extrapolate the three scales using the quantity y = mZt, defined at finite mass, as shown in
Fig. 4, left. In the future we will incorporate the asymptotic behaviour of chiral perturbation theory
into the extrapolation of 7y [12]. An interesting question is whether there are mass-dependent cutoff
effects. None of these are visible in ratios such as /1o rr (Fig. 4, right). Within our good precision
this ratio is described by a universal curve. At this point we note that in our O(a) improved action
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Figure 4: Left: behaviour of #y/a* as a function of the pion mass; to have control on the extrapolation we
use different functions and ranges in y and we quote, as final result, the linear extrapolation with y < 0.08,
corresponding to m; < 390 MeV. Right: for each 3, to er is the value of 1y interpolated to y = 0.08.

we have neglected a small term abgmgtrF),yFyy [13]. The reason to neglect it was that both by is
very small at 1-loop [14] and the bare subtracted quark masses amg are very small. We can now
verify that, with few-per-mille precision, no residual O(a) effects are present in #,. All statements
made hold also for wg and rg, apart from a worse precision for the latter.

To convert our results to physical units we use the lattice spacings of [15], based on fx = 155
MeV. We then extrapolate linearly in a® /1y to the continuum limit, finding:

1§ = 0.02396(37) fm*,  wi™ =0.1776(13) fm, (3.1)
™ = 0.02356(36) fm?,  wh™* =0.1757(13) fm, (3.2)

where “phys” indicates the physical point, given by the physical pion mass (and fx). A comparison
to other determinations of these scales in physical units needs care, since it depends on how that
scale was set originally, e.g. in [10] the mass of the Q baryon was used. A proper discussion of the
dependence on the number of flavours requires to consider specific ratios. We now turn to those.

4. Dynamical quark effects

The three possible ratios obtained by combining #y/a?, (ro/a)? and (wy/a)?* are extrapolated
to the physical point as discussed above. We then approach the limit @ — O of all three ratios by a
linear extrapolation in a® /7y, shown in Fig. 5. Here #o/r} has the smallest discretisation effects. The
Figure also shows a comparison with results with a different number of flavours. Those for Ny =0
either come directly from [1] or from our analysis of (E(z)) computed there. For Ny =2+ 1, we
estimated 7/r3 and w3/r3 by combining ro = 0.480(11) fm [16] with /% = 0.1465(25) fm and
wo = 0.1755(18) fm [10]. Also #o/w3 is computed from those numbers neglecting error correla-
tions, which most certainly yields a strong overestimate of the error. Finally for Ny =241+ 1 we
combine ry/r; = 1.508(5) [17] (neglecting a difference between Ny =2+ 1 and Ny =2+ 1+ 1),
Vo /wo =0.835(8) and r| /wo = 1.790(25) [18].

The ratios shown in Fig. 5 demonstrate that the Ny = 0 and the Ny = 2 theories differ quite
strongly for these purely gluonic observables. This is interesting since we are looking at infrared-
dominated quantities — non-perturbative features of the theory. The effects of the heavier quarks,
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Figure 5: Continuum extrapolation and flavour number dependence of ratios of scales.

strange and charm, appear to be less pronounced, but still noticeable. Of course, for a very heavy
quark, decoupling is expected in the sense that such dimensionless low energy quantities should
agree for theories with Ny and Ny — 1 quarks up to corrections suppressed by inverse powers of the
mass my;, of the heaviest quark.

5. Conclusions

In this work we have studied the topological charge and the scales #y and wq for Ny = 2 O(a)-
improved Wilson fermions. We demonstrated the quality of our ensembles via empirical tests
such as the distribution of the topological charge and its susceptibility. Both turn out to be in
agreement with theoretical expectations, even if the latter is affected by large discretisation effects.
We verified that when the statistics is at least 207, auto-correlations are under reasonable control
and error estimates are possible down to lattice spacings ~ 0.05 fm. The dynamical separation of
the topological sectors in the Ny = 2 theory is very similar to the pure gauge theory.

The expected suppression of topology by dynamical fermions is observed. We investigated
the Nr dependence of 79, wo and rg by a comparison to data in the literature. The use of the full
CLS ensembles and the mild dependence on the quark mass allowed for a controlled extrapolation
to the two-flavour continuum theory. Ratios of the scales show a rather significant effect of the two
light dynamical fermions, but, interestingly, already the effect of the heavier strange quark is not as
pronounced.
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