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1. Introduction

The muon anomalous magnetic moment is among the most precisely measured quantities in
physics withaµ ≡

(gµ−2)
2 determined experimentally to about 0.5 parts per million [1]. Theoretical

calculations of Standard Model contributions toaµ have similar precision. There currently exists
tension between Standard Model and experimental determinations of 3.6 standard deviations [2]:

aexp
µ −aSM

µ = 287(63)(49)×10−11. (1.1)

The possibility that this tension is a hint of beyond Standard Model physics has led to renewed
effort to improve the precision of these determinations. The Muong−2 experiment at Fermilab
aims to improve the experimental precision to 0.14 parts per million [3].

The full standard model calculation includes contributions from QED, electro-weak and hadronic
processes. The uncertainty on the theory side is dominated by the calculationof the hadronic con-
tributions. The current best precision of the leading such contribution, known as the hadronic
vacuum polarization (HVP) contribution, comes from experimentale+e− cross-section data [5, 4]
andτ → ντ+ hadronsdecay data [6].

The challenge is for lattice QCD to provide first-principle calculations of the hadronic con-
tributions toaµ that meet or exceed the current precision of semi-empirical methods. There have
been a number of attempts by different lattice groups 5[7, 8, 9, 10, 11] demonstrating the feasibility
of the approach. A full calculation will require a calculation of the hadronicvacuum polarization
(HVP), including disconnected contributions, as well as the contribution oflight-by-light scattering
through hadrons.

Here we give a preliminary report of our efforts to calculate the leading-order contribution of
the HVP. We present results based on lattices with either 2+1 flavors or four non-degenerate flavors
of HEX-smeared clover-type fermions. We include ensembles with pion masses at or below the
physical value.

2. Lattice calculation

Our preliminary calculations have been performed on the ensembles listed in Table 1. We
use HEX-smeared clover-type fermions. We use either two or three levels of HEX smearing. The
“2-HEX” ensembles haveNf = 2+1 flavors and are described more fully in [12]. These include
ensembles with the pion mass at or below the physical value. The “3-HEX” lattices have four
non-degenerate flavors of dynamical fermions, corresponding tou, d, s andc quarks.

The contribution of the HVP at the lowest order comes from diagrams such as Fig. 1. The lat-
tice method devised by Blum [13] is based on the recognition that these diagrams can be calculated
by determining the vacuum-subtracted HVP,Π̂(Q2) as a function of the square of the Euclidean
momentumQ, then integrating [14]

ahad,LO
µ =

α
π

∫ ∞

0
dQ2 f (Q2)Π̂(Q2), (2.1)

with the kernel function

f (Q2) =
m2

µQ2Z(Q2)3
(

1−Q2Z(Q2)
)

1+m2
µQ2Z(Q2)2 , (2.2)
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2-HEX (Nf = 2+1)
ambare

ud ambare
s volume # cfgs Mπ (GeV) ntw

β = 3.31,a−1 = 1.697 GeV
-0.09933 -0.0400 483×48 928 0.136(2)
-0.09300 -0.0400 243×48 210 0.255(2)

β = 3.5, a−1 = 2.131 GeV
-0.05294 -0.0060 643×64 83 0.130(2)
-0.04900 -0.0120 323×64 216 0.250(2)
-0.04900 -0.0060 323×64 110 0.258(2)
-0.04630 -0.0120 323×64 212 0.308(2)

β = 3.61,a−1 = 2.561 GeV
-0.03000 -0.0042 323×48 188 0.332(4) 0.5, 0.25, 0.1

β = 3.7, a−1 = 3.026 GeV
-0.02700 0.0000 643×64 208 0.182(2)

3-HEX (Nf = 4)
ambare

u ambare
d ambare

s ambare
c volume # cfgs Mπ (GeV)

β = 3.2, a−1 = 1.897 GeV
-0.0806 -0.0794 -0.033 0.71 323×64 240 0.250

Table 1: Configurations used in preliminary study.
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Figure 1: Leading-order connected and disconnected hadronic contributions toaµ .

where

Z =−
Q2−

√

Q4+4m2
µQ2

2m2
µQ2 . (2.3)

On the lattice we calculate for each flavor,f , the HVP tensor as the Fourier transform of the
vector current correlator:

Π f
µν(Q̂) = a4∑

y
eiQ(x+ aµ̂

2 −y)〈JCVC
µ (x)Jloc

ν (y)〉, (2.4)

with

Jloc, f
ν (y) = ψ f (x)γνψ f (x), (2.5)

and the conserved vector current (CVC) as given by

JCVC, f
µ (x) =

1
2

[

ψ̄ f (x+aµ̂)(1+ γµ)U
†
µ(x)ψ f (x)− ψ̄ f (x)(1− γµ)Uµ(x)ψ f (x+aµ̂)

]

. (2.6)
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The HVP tensor satisfies the Ward-Takahashi Identity (WTI) on the conserved indexµ:

Q̂µΠ̂ f
µν = 0, (2.7)

with the modified lattice momentum

Q̂µ =
2
a

sin

(

aQµ

2

)

and Qµ =
2πnµ

Lµ
. (2.8)

To enforce conservation on the local current sink indexν we requireQν = 0. We also use diagonal
µ = ν elements only.

With Euclidean momentumQµ , the vacuum-subtracted HVP scalarΠ̂(Q2) appearing in (2.1)
is related to the HVP tensorΠ f

µν(Q) through

Π f
µν(Q) =

(

Q2δµν −QµQν
)

Π f (Q2) (2.9)

and

Π̂(Q2) = 4πα
Nf

∑
f=0

q2
f

(

Π f (Q2)−Π f (0)
)

, (2.10)

whereqf is the electromagnetic charge of quark flavorf .
To perform the vacuum subtraction in (2.10) we must know the value ofΠ f (0), which is not

directly accessible from the lattice data. To do so we fit the measured values of Π f (0) to a suitable
function ofQ2 and extrapolate toQ2 = 0. For simplicity in this preliminary work we fit to:

Π(Q2) = c+
N

∑
i=0

bi

Q2+ci
, (2.11)

a multi-vector-dominance model, withN = 1 or 2, as the data support. Goltermanet al.[15] note
in these proceedings that this is not an optimal fit ansatz. In the final calculation we will explore
different fit forms to constrain systematic errors.

An example of the fits to unsubtracted HVP scalars is shown in Fig. 2. The vector dominance
model suggests that the HVP scalar should behave approximately as

Πtree(Q2) =
2
3

f 2
V

Q2+m2
V

. (2.12)

As a consistency check we compare values ofMρ and fρ obtained from the fits (MHVP
ρ ≡ c1/2

0 and
f HVP
ρ ≡

√

3b0/2) respectively with those extracted from straightforward spectroscopy fits of the
zero-momentum correlators. These comparisons are shown in Figs. 3a and 3b.

To determineahad,LO
µ we use the fitted parameters to define a continuous functionΠ(Q2) with

(2.11), substitute the resultinĝΠ(Q2) into the integral (2.1), which we evaluate numerically.

2.1 Twisted boundary conditions

The integrandf (Q2)Π̂(Q2) has a peak at around the muon mass, which is approximately
an order of magnitude lower than the smallest, non-vanishing lattice momentum available on our
lattices. This creates a large model-dependence as we extrapolate our results towardQ2 = 0.
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Figure 2: Sample fit of light and strange components of the HVP scalar fromβ = 3.50Mπ = 250 MeV data
set.
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Figure 3: Comparison ofMρ and fρ from HVP fits and spectroscopy fits.

Twisted boundary conditions have been proposed [16] as a method of accessing arbitrarily
low lattice momenta. One must twist the spatial boundary conditions in the valence quark and
anti-quark fields by a relative angle

ψ(x+Lµ) = eiθ tw
µ ψ(x) with θ tw

µ = 2πntw
µ . (2.13)

The lattice momenta transform as

Qµ → Qµ −θ tw
µ /Lµ (2.14)

in the twisted direction(s).

We explore this (Fig. 4) and note several issues. First, the naive twisting breaks the WTI,
though the violation becomes negligible as the spatial volume increases. Aubinet al. [17] note this
and provide a term to correct it. Second, the relative statistical error onΠ̂(Q2) grows approximately
like 1/Q4 at lowQ2 due to the division by

(

Q2δµν −QµQν
)

and the subsequent subtraction of the
Q2 = 0 value. At our current statistics, the new twisted points serve mainly as a consistency check
without constraining the fit function significantly. We have not included twisted BC data in the
preliminary results in the next section.

2.2 Matching to perturbation theory

A careful calculation ofahad,LO
µ should include a matching of lattice data to perturbation theory

at large values ofQ2. In Fig. 4b we demonstrate that such matching is feasible for theQ2 ≈ 2 GeV
region, using expressions from [18]. We do not include such a matchingin our current calculation,
introducing systematic error of∼ 1% or less.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
0
2

Hadronic contributions to gµ −2 Eric B. Gregory

✧

✧✧✧

✧✧✧
✧

✧
✧

✧✧✧

✧

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
2
  (GeV

2
)

-0.2

-0.15

-0.1

-0.05
Π

(Q
2 )

n
tw

 = 0.10

n
tw

 = 0.25

n
tw

 = 0.50

n
tw

 = 1.00✧

no twist

0.001 0.01 0.1 1 10

Q
2
 (GeV

2
)

0.001

0.01

0.1

1

10

100

1000

er
r[

Π
(Q

2 )]
 / 

[Π
(Q

2 ) 
- Π

(0
)]

n
tw

 = 0.00
n

tw
 = 0.10

n
tw

 = 0.25
n

tw
 = 0.50

  0.01/Q
2

0.004/Q
4

Figure 4: (left) Comparison of twisted BC and non-twisted BC data for the light quark channel of the
β = 3.61Mπ = 332 MeV ensemble. (right) Error/signal for the same points.Dashed lines to guide the eye.
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Figure 5: A sample matching of the lattice data to perturbation theoryfor β = 3.5, Mπ = 130 MeV.

3. Results and conclusions

In Figs. 6a and 6b we display our preliminary results with statistical error bars only. Fig. 6a
shows the value ofahad,LO

µ we obtain for the various ensembles, as a function ofM2
π . We show

results from some other groups for comparison. Figure 6b shows only our physicalMπ ensemble
results with other determinations (including calculations with experimental input).

Our future work will refine these calculations, with more ensembles, higher statistics and a
full error budget. We also plan to include an estimate of the disconnected contribution.
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