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1. Introduction

Magnetic fields of the order of 2 GeV existed in the early Universe during the electroweak
transition [1]. The values of the magnetic fields in the nenttal heavy-ion collisions can reach
the value 187 ~ 0.29 Ge\? [2].

STAR collaboration has detected the chiral magnetic etie®HIC in the non-central colli-
sions of gold ions [3, 4, 5]. Later this effect was also obedrin the experiment ALICE at LHC
[6]. The strong magnetic field also results to the modificatbthe phase diagram of QCD. Phe-
nomenological models show that the critical temperaturtheftransition between the phases of
confinement and deconfinement varies with increasing of tkermal magnetic field, and the
phase transition becomes of first order [7].

The growth of the phase transition temperaflyeas predicted by the models of Nambu-Jona-
Lasinio type: NJL, EPNJL, PNJL [8] and PNg[9], the Gross-Neveu model [10, 11], as well as
the first calculations on the lattice QCD with two quarks [1Blowever, the lattice calculations
in QCD with Ny = 2+ 1 revealed thal; decreases with increasing Bfvalue [13]. The chiral
perturbation theory gives the decreasdgivith the growth of field value [14].

It has been shown in the framework of the Nambu-Jona-Lasitudel that in the presence of
sufficiently strong magnetic field8{ = mf,/e: 10'® T) QCD vacuum becomes a superconduc-
tor [15] along the direction of the magnetic field. The tréinsi to the superconducting phase is
accompanied by a condensation of the chamgedesons. Calculations on the lattice [16] also in-
dicate the existence of the superconducting phase. We haestigated the behavior of the masses
of the neutralp with different spin projectiors = 0 ands = +1 to the direction of the magnetic
field. Quark propagators were calculated with the chirahirant fermionic operator. In [17] the
mass of neutral vectgg meson was calculated in the relativistic quark-antiquaddet, the mass
of neutralp meson with zero spin does not vanishes with the growth of thgnatic field in the
confinement phase in a contradiction with the results of.[15]

2. Detailsof the calculations

The improved Symanzik action has been used for the genemft®U(2) gauge field configu-
rations similarly to our previous work [18]. The calculatfowere performed on symmetric lattices
with different lattice volumes 14 16*, 18" and lattice spacinga = 0.0681, 0.0998 and (138348
fm.

Fermionic spectrum in the background $i)(2) gauge fields were calculated using a chiral
invariant overlap operator, proposed by Neuberger [19is ®perator allows to explore the theory
without chiral symmetry breaking.

In a continuous space the analogue of this operator is treciperatoD = y*(d, —iAy),
the corresponding Dirac equation is

Dk = iAkyk (2.1)

The Neuberger overlap operator allows to calculate thenfugetionsy, and the eigenvalues
for a test quark in an external gauge field configuratidps A, is a sum ofSU(2) gauge fields
and the external abelian uniform magnetic field. From therdignctions of the Dirac operator we
construct operators and correlators.
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Abelian fields interact with quarks, so for the introductiminthe external magnetic field it’s
necessary to perform the following substitution

Auij — Auij + ARG, (2.2)

B
AE (x) = E(X15u.2 —X20y.1). (2.3)

To match this change with the lattice boundary conditiores tthisted boundary conditions for
fermions have been used as described in [20].

The value of magnetic field on the lattice is quantized

gB= %, keZ, (2.4)

whereq = —1/3e is the charge ofl-quark, there is one type of fermions in the theays the
lattice spacing in physical units. The quantization cdaadiimposes the limit on the minimum
value of the magnetic field. For our calculations it equal@.886 GeV for lattice volume 16 and
lattice spacing 1383 fm.

For each value of the quark mass in the interngh = 0.01— 0.8 statistical independent con-
figurations of the gluon field have been used.

3. Calculation of the observables

The following observables were calculated

(W ()01 (X)W (y)O2y(y))a (3.1)

whereO1,0, = ¥, v are Dirac gamma matriceg, v = 1,..,4. In the Euclidean spaag’ = ¢
[21]. The correlators (3.1) are defined by the Dirac propagatfor their calculation the inverse
matrix for the massive Dirac operatof (D + m) should be found. For M lowest eigenstates Dirac
operator it is represented by the sum

W)W (y)
i/\k +m ’

(X>y) = z

k<M

Drm (3:2)
In this workM = 50 was used. On the lattice in the background of a gaugeAjgttie observables
(3.1) have the form

(K|O1]k) {p|O2|p) — {p|O1|k) (KIO2| p)

(WOLYYOP)A = N (et m) (Aot m)

(3.3)

The first term in the numerator represents a disconnected grat the second one with a minus
sign - a connected part. The first term is less than the seamsdhas large statistical errors, does
not affect the result, so for further calculations only th@mected part of the correlator was used.

The mass of the neutralmeson was obtained from the correlator of vector curr(ajﬁ{,tS() MUY
wherej);(X) = ¢T(X)y,W(x). The correlator jS(x) j°S(y))a gives the mass of the meson, where
jPS= W' (X)ysW(x) is the pseudoscalar current.
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For the calculation of meson masses we used the method, baghd spectral expansion of
the lattice correlation function

C(n) = (Y0, )01y (0,n)¢"(0,0)0,9(0,0))a = Z(0|01|k><k|05|0>e*”‘aa7 (34)

C(ny) = Age Mo pjeMaBL (3.5)

whereAg, A; are some constantgg is the energy of the lowest state, for the particle with agera
zero momentunp = 0 its energy coincides with its mag&g = my, E; is the energy of the first
excited statea is the lattice spacingy is the time coordinate on the lattice. From the expansion
(3.5) one can see that for large valugghe main contribution comes from the ground energy state.

Due to the periodic boundary conditions the contributiothefground state into the propaga-
tor of a meson has the form

f(ny) = Age 2% 4 Age~(NT—m)aBo — ppe~NrBo/2 cosh( (N — ny)aEy) (3.6)

The mass value of the ground state mass can be obtained fitércorrelator by the function (3.6),
rn; is the number at lattice site in the time direction.

The second method which we use is the Maximal Entropy Methtiel\) [22]. The imaginary-
time Euclidean correlatds(t, p) = [ d3x(O(1,%)0(0,0))e '™ is related to the spectral function
p(w, P) according to

G(1.9)= [ SoK(T.w)p(.P) @)

In generalp(w, p) contains the all properties of mesons and hadrons. We camas@o mo-
mentum casép) = 0 and drop the momentum dependence in the following. Theg@ak in the
spectral function corresponds to the energy of the grouaté.sThe kernel in (3.7) is given by

_ coshw(r—1/2T)]

KT w) = sinh(w/2T) ’ (3.8)

whereT is the temperature; is the euclidean timew is the frequency. For the calculation of the
spectral function an inversion of (3.7) has to be performed.
On the lattice this problem is ill-defined, because the tatweG(1) is calculated numerically
at the discrete set of points= tmin+ (i—1)a, i =1,...N; andN; = 1/(aT) is typically of the order
of O(10). The integral was approximated by a discrete sum at thepainE nAw, n=1,....N,
andN,, is usually~ O(10®). We cut off the integral (3.7) at som@anay. All the same the inversion
becomes impossible. But the ideas of Bayesian probalilégry allow to overcome this difficulty.
The most probable spectral functiprico) can be constructed if we find the maximum of the
conditional probabilityP[p|DHam]|, whereD is the dataH is our hypothesisa is a real and
positive parametem = m(w) is a default model. This procedure is equivalent to a maation
of the free energy = L — a'S, whereSis the Shannon entropy term, defined by the following way

S:/Omdw {p(w)—m(w)—p(w)ln% . (3.9)

L is the standard likelihood function, the detailed explemmahow to make a corresponding dis-
cretization on the lattice is given in [22]. The parameatepalances the relative importance of the
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data and the prior hypothesis. We take [amin, 0max and average the data over this interval. This
interval was choosen in such way that the results vary $jiglor approximately 10%.

The kernel (3.8) contains divergencewat= 0 leading to the unstable behaviour of the proce-
dure at small energies. The Bryan’s key idea was to redefm&dmel and spectral function

K(0.1) = oK (@.1), p(w)= 2 p(e) (3.10)

so thatk (w, T)p(w) = K(w, T)p(w) and apply the SVD theorem to the modified discretized kernel
K(wn, i), see [23]. We use this modified algorithm to determine thetspfunction in the form

N
P(w) = M(w)expy G (). (3.11)
The column vectorsi, (i =1,..,N) are normalized
Ne
(Uilup) = > ui(wn)uj(wn) = &;, (3.12)
n=1

G are the coefficients and we 9€(0,7) = 1.

To reconstruct the spectral functign'w) we have to choose the default mode{w) in a
correct way. The default model should describe correcyhilgh and low energy behaviour of the
spectral function. Following the analysis of [24] we chodse the form

G(N:/2) 3
T2 7 82’
ay = 1 for scalar and pseudoscalar chaniagl,= 2 for the vector and axial vector channel [25].

We also try another default model (constant functionw?, vary them, andmy,), but the choice
(3.13) gives the best convergence for MEM.

M(W) = Maw~+ My, My = My = ay (3.13)

4. Results

At first we calculate the mass of the neutraineson on the lattice from the correlators of the
pseudoscalar currer®SPSny) = (jPS(0,n) j75(0,0))a, wherej?S(0,ny) = @ (0, ) ysw (O, ). At
Fig.1 (left) the squared pion mass is depicted fot tHétice volume, different bare quark masses
and different values of the magnetic fittl= +/eB. Fig.1 (left) reveals the linear dependence of
the squaredt meson mass versus the bare quark mass. The Chiral Peruardteory (ChPT)

predicts the linear dependence according to the relation

fame = P (Py), (4.1)

wheref;; is the pion decay constarfyy) is the chiral condensatey" is the renormalized quark
mass. In the limit of zero quark mass the pions are massldgspidbn masses are slightly shifted
relatively zero due to the quark mass renormalization orlattiee. The value of the shift corre-
sponds to the quark mass renormalization.

Fig.1 (right) represents the meson mass versus the value of the squared magnetic field afte
the quark mass renormalization. For the renormalized piassiwe get the linear mass dependence



The neutralp and A mesons in a strong magnetic field in SU(2) lattice gahgery. E.V. Luschevskaya

1.2 T T T T T 0.9

2=0.0998 fm: 16, mqa—O 02 —o—
18" mga=0.02 —m—
1+ 0.8 | a=0.1383 fm: 14%, m q(H= 0) (301 ren.m, —&5—
% ma=0.0 —e—
18 mqa=0.02 —@—
L o8¢ 07} i % ]
> > [
© o067 O 06} ®
NE: EE o o
04| 05 | = ®
~E [
)
B\@\\@
0.2} 04| \@L\E\ |
o ‘ ‘ ‘ ‘ og b o
0 20 40 60 80 0 02 04 06 08 1 12 14 16 18
mg, MeV eB, GeV?

Figure 1. The squared mass of the neutraimeson extracted from the pseudoscalar corre@f&rn)
versus the bare lattice quark mass for the lattice volunfe latice spacing 1155 fm, 3 = 3.2000 and
different values of the external magnetic field (left). Thass of the neutraft meson depending on the
squared value of magnetic field for renormalized and nonreatized quark mass (right). The all results
were obtained by coshinus function fit.

from the magnetic field, the slope is negative in accordantetive results of A.Smilga, obtained
with the Chiral Perturbation Theory [26]. The value of theps is smaller and differs from ChPT,
because we explore tl8J(2) gauge theory without dinamical quarks.

At Fig.2 (left) the p meson mass versus the bare quark mass is represented akizenale
magnetic field. The extrapolation to the infinite physicdlwmoe have been performed. The masses
are calculated from the correlators of vector currents stimemetry between the different spatial
directions has been taken into account, thereby we impitatistscs in three times. The quark mass
renormalization have not considered because it is verylstnatro magnetic field. We extrapolate
m, to the quark massy, corresponding to the physical value of theneson mass equal 135 MeV.
The vector meson mass, ~ 980+ 30 MeV for the lattice spacing = 0.1338 fm and 1028- 20
MeV for a= 0.1155 fm inSU(2) gluodynamics.

If the external magnetic field is directed along the thirdrdimate axis then the meson masses
with zero spin projection to the direction of the externalgmetic field are calculated from the
expression (3.3) witld1,0, = y5. Fig.2 (right) shows the mass of the neutral vector mesoh wit
zero spin obtained by the Maximal Entropy Method at diffélattice volumes, spacings and bare
quark masses. The mass decreases with the growth of the ticaiield for the all sets of data.
Errors were calculated taking into account thaliscretization.

The masses of the vector meson were calculated for variduesvaf the magnetic field. For
the nonzero magnetic field the quark mass renormalizaiigfj; has been taken into account. It
depends on the lattice volume, lattice spacing and the ntiadiedd value. Therefore we calculate
the mmeson mass for various valuesnf (the bare quark mass which enter into lattice lagrangian).
We extrapolate the mass to small valuesngffix the value of the bare quark masg, correspond-
ing to the physical value of the meson mass at zero magnetic field (135 Mev). We calculatp the
mass for several values of; in the intervalmg = 0.01+- 0.8, perform fits and find the coefficients
g andb; in the equations

My (s=0) = ap+aymg, (4.2)
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Figure 2: The mass of the neutralmeson for the different quark masses and two lattice spadhtpined
by coshinus function fit. The extrapolation was performeth®physical pion meson masg; = 135 MeV
(left). The mass of the neutral vectormeson with zero spis = 0 depending on the magnetic field value
for the lattice volumes 1% 16% 18" and lattice spacings= 0.0998 0.1155 fm, obtained by the Maximal
Entropy Method (right).
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Figure 3: The mass of the neutral vectprmeson with spirs = 0 depending on the external magnetic
field for the lattice volumes 16 18* and lattice spacinga = 0.0998 0.1155 fm (left). The mass of the
neutral vectop meson with spirs = +1 versus the magnetic field value for the lattice volumes 18" and
lattice spacinga = 0.0998 0.1155 fm (right). The results were obtained after quark massygolation by
coshinus function fit.

ma(s= 0) = bg+ b1my 4.3)

and then extrapolatey, (my) to the physical valuesy, (mg,) at mg = my, using (4.2) and (4.3).

Different components of the correlators of vector curremse calculated, diagonal compo-
nents are essentially nonzero, while nondiagonal oneswoewithin the error bars. The correla-
tors of vector currents perpendicular to the magnetic fiedx[?%l <j1 O,m) Y (0 0))a and
CYY () = (j¥ (0,m) }¥ (0,0)), wherejY (0, n) = ¢(0,0)y1(O.ny) andJ (0,n) = <0 0)y2(0,my).
The masses with spis= +1 are found from the relatior8"V(s= 1) = (C}\ +iCY,')/v/2 and
CW(s=-1)=—(C}Y —ic¥y)/V2

At Fig.3 (left) the mass of the neutral meson with zero spin is shown depending on the
magnetic field value. For the all lattice volumes*1@8* and spacings = 0.0998 0.11558 fm
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Figure 4. The mass of the neutral axi&l meson with zero spiis = O versus the value of the external
magnetic field for the lattice volumes 44nd 16 and different lattice spacings, obtained by the Maximal
Entropy Method (left). The mass of the neutral aiaheson with different spins depending on the magnetic
field value for the lattice volumes $618* and lattice spacinga = 0.0998 0.1155 fm. The data were
obtained by coshinus function fit (right).

the mass decreases with the magnetic field. The points anectad by splines to guide the eyes.
Fig.3 (right) shows the mass of tliemeson mass with nonzero spin versus the field value. The
masses with spis = +1 increase with the field. The results were obtained afteqtiek mass
extrapolation.

We observe a weak dependence of masses from the lattice &@lndlattice spacings, but the
gualitative behaviour of the masses with the magnetic feettle same.

Fig. 4 (left) shows the behaviour of the neutral axial mes@asswith zero spin depending on
the external magnetic field calculated by the Maximal Entriglethod.

At Fig. 4 (right) we see the mass of the neutral axial mesoh nétro spirs= 0 and nonzero
spin projectionss = +1 to the direction of the magnetic field. The calculation @& #xial meson
mass needs much more statistics, than for the vector mespecially for nonzero spin compo-
nents. The mass & with zero spin decreases, the masses @itht1 increase slowly.

Unfortunately on the lattice in the presence of the magrfatid the quantum numbers of
mesons are not precise. The mixing takes place due to thadtitsn between photons and vector
(axial) quark currents and can occur between neutral pidmantralp or A meson with zero spin.
No severe methods occurs to disentangle these two staties magnetic field. However we have
indications that the masses of vector and axial mesonsswith-1 definitely increase in o8U(2)
theory. The investigations of the mass behaviour in QCD whjthamical quarks present the huge
interest.

5. Conclusions

In this work we explore the masses of the neutrap and A mesons in the background of
the strong magnetic field of the hadronic scale in the confer@mhase. The masses with zero
spin projection to the magnetic field differ from the masseéth \spin projections= +1. The
masses witls = 0 decrease with the magnetic field, the masses svitht1 increase with the field.
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We consider this phenomena to be the result of the anisqtmpich the strong magnetic field
creates. We do not observe any condensation of the neutsinmeeso there are no evidences of
superfluidity in the confinement phase. However the presehseperconducting phase at high
values of the magnetic fielB [27] in QCD is a hot topic for discussions. The condensatibn o
chargedo mesons would be an evidence of the existence of the supercivity in QCD.

The authors are grateful to ITEP supercomputer center éloelations were performed at su-
percomputers "Graphin" and "Stakan"), Moscow Supercoetpl8CC Center. Athors are grateful
to M.I.Palikarpov, M.N.Chernodub for the usefull discuss and comments.
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